Automated quantification of brain connectivity in Alzheimer's disease using ClusterMetric

弓状束 白质 钩束 纤维束成像 胼胝体 磁共振弥散成像 上纵束 神经科学 解剖 下纵束 生物 磁共振成像 心理学 医学 部分各向异性 放射科
作者
Jingqiang Wang,Caiyun Wen,Jinwen Li,Jianhe Chen,Yuanjing Feng
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:785: 136724-136724 被引量:1
标识
DOI:10.1016/j.neulet.2022.136724
摘要

Diffusion magnetic resonance imaging tractography allows investigating brain structural connections in a noninvasive way and has been widely used for understanding neurological disease. Quantification of brain connectivity along with its length by dividing a fiber bundle into multiple segments (node) is a powerful approach to assess biological properties, which is termed as tractometry. However, current tractometry methods face challenges in node identification along with the length of complex bundles whose morphology is difficult to summarize. In addition, the anatomic measure reflecting the macroscopic fiber cross-section has not been followed in previous tractometry. In this paper, we propose an automated fiber bundle quantification, which we refer to as ClusterMetric. The ClusterMetric uses a data-driven approach to identify fiber clusters corresponding to subdivisions of the white matter anatomy and identify consistent space nodes along the length of clusters across individuals. The proposed method is demonstrated by applicating to our collected dataset including 23 Alzheimer's disease (AD) patients and 22 healthy controls (HCs) and a public dataset of ADNI including 53 AD patients and 85 HCs. The altered white matter tracts in AD group are observed using both datasets, which involve several major fiber tracts including the corpus callosum, corona-radiata-frontal, arcuate fasciculus, inferior occipito-frontal fasciculus, uncinate fasciculus, thalamo-frontal, superior longitudinal fasciculus, inferior cerebellar peduncle, cingulum bundle, and extreme capsule. These fiber clusters represent the white matter connections that could be most affected in AD, suggesting the ability of our method in identifying potential abnormalities specific to local regions within a fiber cluster.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助sdnihbhew采纳,获得10
刚刚
xx关注了科研通微信公众号
1秒前
2秒前
2秒前
2秒前
3秒前
田様应助李国民采纳,获得10
3秒前
3秒前
天真思雁发布了新的文献求助10
4秒前
4秒前
尤觅松完成签到,获得积分10
5秒前
我淦发布了新的文献求助10
5秒前
6秒前
星河发布了新的文献求助10
7秒前
7秒前
8秒前
无情人达完成签到,获得积分10
8秒前
10秒前
曾鸣发布了新的文献求助10
10秒前
wu完成签到 ,获得积分10
10秒前
10秒前
happystarr完成签到,获得积分10
10秒前
sdnihbhew发布了新的文献求助10
11秒前
LLL完成签到,获得积分10
11秒前
11秒前
筱甜完成签到 ,获得积分10
12秒前
可咳咳咳发布了新的文献求助10
13秒前
14秒前
科研通AI2S应助成就的夏之采纳,获得10
15秒前
顺利毕业完成签到 ,获得积分10
15秒前
柚屿发布了新的文献求助10
16秒前
16秒前
天真思雁完成签到 ,获得积分20
16秒前
lily完成签到 ,获得积分10
16秒前
Floatingbird发布了新的文献求助10
17秒前
showmaker完成签到,获得积分10
18秒前
田様应助HAY采纳,获得10
18秒前
zhou完成签到,获得积分10
19秒前
zhiweiyan发布了新的文献求助10
20秒前
星辰大海应助ha采纳,获得10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256170
求助须知:如何正确求助?哪些是违规求助? 2898255
关于积分的说明 8300702
捐赠科研通 2567460
什么是DOI,文献DOI怎么找? 1394536
科研通“疑难数据库(出版商)”最低求助积分说明 652839
邀请新用户注册赠送积分活动 630511