A fast state-of-health estimation method using single linear feature for lithium-ion batteries

特征(语言学) 计算机科学 健康状况 估计 线性模型 线性回归 能量(信号处理) 数据挖掘
作者
Mingjie Shi,Jun Xu,Chuanping Lin,Xuesong Mei
出处
期刊:Energy [Elsevier BV]
卷期号:: 124652-124652
标识
DOI:10.1016/j.energy.2022.124652
摘要

Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short-term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. • A single-feature linear regression model is proposed to achieve SOH estimation. • Short-time linear and efficient aging features are extracted. • Accurate SOH estimation is achieved by using only the first 20% of the data. • Less than 30 s of data is required to extract features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助陈敏采纳,获得20
1秒前
1秒前
2秒前
3秒前
3秒前
Akim应助杨梦茹采纳,获得10
3秒前
OVERLXRD完成签到,获得积分10
4秒前
1234567890完成签到,获得积分10
4秒前
5秒前
流浪小诗人完成签到,获得积分10
5秒前
xzy998发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
科研通AI5应助kingyo采纳,获得10
6秒前
科研通AI6应助WNL采纳,获得10
6秒前
烟花应助陈灿灿采纳,获得10
7秒前
花开hhhhhhh发布了新的文献求助10
7秒前
李健应助秀儿采纳,获得10
7秒前
要减肥的狗完成签到,获得积分10
7秒前
胖胖发布了新的文献求助10
8秒前
mochi发布了新的文献求助10
8秒前
8秒前
1234567890发布了新的文献求助10
8秒前
科研通AI6应助寻凝采纳,获得10
9秒前
12发布了新的文献求助10
9秒前
9秒前
zhao完成签到,获得积分20
10秒前
10秒前
111发布了新的文献求助10
10秒前
秣旎发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
成长中完成签到 ,获得积分10
11秒前
man发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835