A fast state-of-health estimation method using single linear feature for lithium-ion batteries

特征(语言学) 计算机科学 电池(电) 健康状况 估计 能量(信号处理) 工程类 功率(物理) 数学 统计 系统工程 语言学 物理 哲学 量子力学
作者
Mingjie Shi,Jun Xu,Chuanping Lin,Xuesong Mei
出处
期刊:Energy [Elsevier]
卷期号:256: 124652-124652 被引量:47
标识
DOI:10.1016/j.energy.2022.124652
摘要

Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short-term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. • A single-feature linear regression model is proposed to achieve SOH estimation. • Short-time linear and efficient aging features are extracted. • Accurate SOH estimation is achieved by using only the first 20% of the data. • Less than 30 s of data is required to extract features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simon_chat完成签到,获得积分10
1秒前
传奇3应助BK采纳,获得10
1秒前
锵锵锵应助安静初瑶采纳,获得10
2秒前
我是老大应助Lusteri采纳,获得10
2秒前
4秒前
5秒前
浮游应助djbj2022采纳,获得10
6秒前
10秒前
优秀笑柳完成签到,获得积分10
10秒前
丘比特应助trussie采纳,获得10
10秒前
Cherish完成签到,获得积分10
11秒前
111完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Owen应助马上飞上宇宙采纳,获得10
12秒前
善学以致用应助jc采纳,获得10
12秒前
14秒前
划分完成签到,获得积分10
14秒前
111发布了新的文献求助10
15秒前
fanfan完成签到,获得积分10
16秒前
周久完成签到 ,获得积分10
16秒前
ada发布了新的文献求助10
17秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
18秒前
彭tiantian完成签到 ,获得积分10
18秒前
20秒前
lucy发布了新的文献求助10
20秒前
22秒前
爱放屁的马邦德完成签到,获得积分10
22秒前
simdows发布了新的文献求助10
23秒前
Rain完成签到,获得积分10
24秒前
25秒前
lzcccccc完成签到,获得积分10
26秒前
ljc完成签到 ,获得积分10
27秒前
28秒前
科研通AI6应助纸箱采纳,获得10
29秒前
29秒前
original完成签到,获得积分10
30秒前
一向年光无限身完成签到,获得积分10
30秒前
浮游应助大李不说话采纳,获得10
32秒前
33秒前
日出完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741