A fast state-of-health estimation method using single linear feature for lithium-ion batteries

特征(语言学) 计算机科学 健康状况 估计 线性模型 线性回归 能量(信号处理) 数据挖掘
作者
Mingjie Shi,Jun Xu,Chuanping Lin,Xuesong Mei
出处
期刊:Energy [Elsevier]
卷期号:: 124652-124652
标识
DOI:10.1016/j.energy.2022.124652
摘要

Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short-term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. • A single-feature linear regression model is proposed to achieve SOH estimation. • Short-time linear and efficient aging features are extracted. • Accurate SOH estimation is achieved by using only the first 20% of the data. • Less than 30 s of data is required to extract features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助mm采纳,获得10
刚刚
orixero应助有机合成采纳,获得10
刚刚
刚刚
2秒前
111发布了新的文献求助10
3秒前
buff完成签到 ,获得积分10
3秒前
DingYL完成签到,获得积分10
3秒前
3秒前
3秒前
dochx完成签到,获得积分10
3秒前
3秒前
贾克斯完成签到,获得积分20
4秒前
丘比特应助富人雄采纳,获得10
4秒前
心灵美书雁关注了科研通微信公众号
4秒前
大模型应助baiyi2024采纳,获得10
4秒前
李爱国应助花眠采纳,获得10
4秒前
5秒前
5秒前
5秒前
uping发布了新的文献求助10
7秒前
1234567xjy发布了新的文献求助10
7秒前
木槿完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
shor0414发布了新的文献求助10
10秒前
情怀应助...采纳,获得10
10秒前
张东泽发布了新的文献求助10
10秒前
NexusExplorer应助一方通行采纳,获得10
10秒前
丘比特应助orange9采纳,获得10
10秒前
大大小小发布了新的文献求助10
11秒前
自信谷冬发布了新的文献求助10
12秒前
12秒前
zqingqing发布了新的文献求助10
12秒前
Jieyu完成签到,获得积分10
13秒前
个性的紫菜应助zhlh采纳,获得10
14秒前
lanze发布了新的文献求助10
15秒前
Xing完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160253
求助须知:如何正确求助?哪些是违规求助? 2811323
关于积分的说明 7891987
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315488
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038