A fast state-of-health estimation method using single linear feature for lithium-ion batteries

特征(语言学) 计算机科学 电池(电) 健康状况 估计 能量(信号处理) 工程类 功率(物理) 数学 统计 语言学 量子力学 物理 哲学 系统工程
作者
Mingjie Shi,Jun Xu,Chuanping Lin,Xuesong Mei
出处
期刊:Energy [Elsevier]
卷期号:256: 124652-124652 被引量:47
标识
DOI:10.1016/j.energy.2022.124652
摘要

Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short-term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. • A single-feature linear regression model is proposed to achieve SOH estimation. • Short-time linear and efficient aging features are extracted. • Accurate SOH estimation is achieved by using only the first 20% of the data. • Less than 30 s of data is required to extract features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
JamesPei应助时钟采纳,获得10
2秒前
2秒前
开朗若之完成签到 ,获得积分10
2秒前
刘凤莲发布了新的文献求助10
3秒前
ollll完成签到,获得积分10
4秒前
桂桂完成签到,获得积分10
4秒前
5秒前
WB87应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
WB87应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
帅气鹭洋发布了新的文献求助10
5秒前
5秒前
Mic应助科研通管家采纳,获得10
5秒前
WB87应助科研通管家采纳,获得10
5秒前
yznfly应助科研通管家采纳,获得50
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得50
6秒前
英姑应助科研通管家采纳,获得10
6秒前
WB87应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
七院发布了新的文献求助100
8秒前
8秒前
执着的诗桃完成签到,获得积分10
8秒前
土星发布了新的文献求助30
9秒前
9秒前
zc完成签到 ,获得积分10
9秒前
小羊学学学完成签到 ,获得积分10
9秒前
9秒前
10秒前
时钟完成签到,获得积分20
12秒前
sh完成签到,获得积分20
12秒前
13秒前
111发布了新的文献求助10
14秒前
英姑应助irisy采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428975
求助须知:如何正确求助?哪些是违规求助? 4542495
关于积分的说明 14181264
捐赠科研通 4460186
什么是DOI,文献DOI怎么找? 2445634
邀请新用户注册赠送积分活动 1436837
关于科研通互助平台的介绍 1414040