清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A fast state-of-health estimation method using single linear feature for lithium-ion batteries

特征(语言学) 计算机科学 电池(电) 健康状况 估计 能量(信号处理) 工程类 功率(物理) 数学 统计 语言学 量子力学 物理 哲学 系统工程
作者
Mingjie Shi,Jun Xu,Chuanping Lin,Xuesong Mei
出处
期刊:Energy [Elsevier]
卷期号:256: 124652-124652 被引量:47
标识
DOI:10.1016/j.energy.2022.124652
摘要

Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short-term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. • A single-feature linear regression model is proposed to achieve SOH estimation. • Short-time linear and efficient aging features are extracted. • Accurate SOH estimation is achieved by using only the first 20% of the data. • Less than 30 s of data is required to extract features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助arsenal采纳,获得10
2秒前
10秒前
16秒前
arsenal发布了新的文献求助10
16秒前
Tong完成签到,获得积分0
17秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
26秒前
wodetaiyangLLL完成签到 ,获得积分10
29秒前
38秒前
friend516完成签到 ,获得积分10
1分钟前
1分钟前
淡定自中发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
可夫司机完成签到 ,获得积分10
2分钟前
CadoreK完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
linqitc发布了新的文献求助10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
ffff完成签到 ,获得积分10
3分钟前
碗碗豆喵完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
3分钟前
lph完成签到 ,获得积分10
3分钟前
DJ_Tokyo完成签到,获得积分0
3分钟前
yaya完成签到 ,获得积分10
3分钟前
4分钟前
zhangsan完成签到,获得积分10
4分钟前
靓丽奇迹完成签到 ,获得积分10
4分钟前
4分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助舒适的大有采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534541
求助须知:如何正确求助?哪些是违规求助? 4622572
关于积分的说明 14582648
捐赠科研通 4562692
什么是DOI,文献DOI怎么找? 2500318
邀请新用户注册赠送积分活动 1479848
关于科研通互助平台的介绍 1451059