A fast state-of-health estimation method using single linear feature for lithium-ion batteries

特征(语言学) 计算机科学 健康状况 估计 线性模型 线性回归 能量(信号处理) 数据挖掘
作者
Mingjie Shi,Jun Xu,Chuanping Lin,Xuesong Mei
出处
期刊:Energy [Elsevier BV]
卷期号:: 124652-124652
标识
DOI:10.1016/j.energy.2022.124652
摘要

Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short-term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. • A single-feature linear regression model is proposed to achieve SOH estimation. • Short-time linear and efficient aging features are extracted. • Accurate SOH estimation is achieved by using only the first 20% of the data. • Less than 30 s of data is required to extract features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kismet发布了新的文献求助10
刚刚
对苏完成签到,获得积分10
1秒前
SWAGGER123发布了新的文献求助10
2秒前
柯一一应助周小鱼采纳,获得10
2秒前
2秒前
2秒前
MAKEYF发布了新的文献求助10
2秒前
orixero应助樱桃小贩采纳,获得10
3秒前
对苏发布了新的文献求助10
4秒前
4秒前
田様应助可爱寻菡采纳,获得30
5秒前
SHAO应助蜡笔小新采纳,获得10
5秒前
上官若男应助安静笑晴采纳,获得10
6秒前
慕青应助善良的梦槐采纳,获得10
6秒前
南兮完成签到,获得积分10
7秒前
Fury发布了新的文献求助20
7秒前
朱哦哦完成签到,获得积分10
7秒前
zx发布了新的文献求助10
7秒前
FashionBoy应助kitten采纳,获得10
8秒前
Kismet发布了新的文献求助10
8秒前
壮观以松发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
深情安青应助沐曦采纳,获得10
13秒前
14秒前
15秒前
SYLH应助受伤的破茧采纳,获得20
15秒前
lcls完成签到,获得积分10
15秒前
haihuhu完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
18秒前
香蕉觅云应助XCHI采纳,获得10
18秒前
Kismet发布了新的文献求助10
18秒前
愁思忆完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367