Hybrid U‐Net‐based deep learning model for volume segmentation of lung nodules in CT images

深度学习 人工智能 卷积神经网络 分割 计算机科学 结核(地质) 编码器 模式识别(心理学) 生物 古生物学 操作系统
作者
Yifan Wang,Chuan Zhou,Heang-Ping Chan,Lubomir M. Hadjiiski,Aamer Chughtai,Ella A. Kazerooni
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 7287-7302 被引量:3
标识
DOI:10.1002/mp.15810
摘要

Objective Accurate segmentation of the lung nodule in computed tomography images is a critical component of a computer-assisted lung cancer detection/diagnosis system. However, lung nodule segmentation is a challenging task due to the heterogeneity of nodules. This study is to develop a hybrid deep learning (H-DL) model for the segmentation of lung nodules with a wide variety of sizes, shapes, margins, and opacities. Materials and methods A dataset collected from Lung Image Database Consortium image collection containing 847 cases with lung nodules manually annotated by at least two radiologists with nodule diameters greater than 7 mm and less than 45 mm was randomly split into 683 training/validation and 164 independent test cases. The 50% consensus consolidation of radiologists' annotation was used as the reference standard for each nodule. We designed a new H-DL model combining two deep convolutional neural networks (DCNNs) with different structures as encoders to increase the learning capabilities for the segmentation of complex lung nodules. Leveraging the basic symmetric U-shaped architecture of U-Net, we redesigned two new U-shaped deep learning (U-DL) models that were expanded to six levels of convolutional layers. One U-DL model used a shallow DCNN structure containing 16 convolutional layers adapted from the VGG-19 as the encoder, and the other used a deep DCNN structure containing 200 layers adapted from DenseNet-201 as the encoder, while the same decoder with only one convolutional layer at each level was used in both U-DL models, and we referred to them as the shallow and deep U-DL models. Finally, an ensemble layer was used to combine the two U-DL models into the H-DL model. We compared the effectiveness of the H-DL, the shallow U-DL and the deep U-DL models by deploying them separately to the test set. The accuracy of volume segmentation for each nodule was evaluated by the 3D Dice coefficient and Jaccard index (JI) relative to the reference standard. For comparison, we calculated the median and minimum of the 3D Dice and JI over the individual radiologists who segmented each nodule, referred to as M-Dice, min-Dice, M-JI, and min-JI. Results For the 164 test cases with 327 nodules, our H-DL model achieved an average 3D Dice coefficient of 0.750 ± 0.135 and an average JI of 0.617 ± 0.159. The radiologists' average M-Dice was 0.778 ± 0.102, and the average M-JI was 0.651 ± 0.127; both were significantly higher than those achieved by the H-DL model (p < 0.05). The radiologists' average min-Dice (0.685 ± 0.139) and the average min-JI (0.537 ± 0.153) were significantly lower than those achieved by the H-DL model (p < 0.05). The results indicated that the H-DL model approached the average performance of radiologists and was superior to the radiologist whose manual segmentation had the min-Dice and min-JI. Moreover, the average Dice and average JI achieved by the H-DL model were significantly higher than those achieved by the individual shallow U-DL model (Dice of 0.745 ± 0.139, JI of 0.611 ± 0.161; p < 0.05) or the individual deep U-DL model alone (Dice of 0.739 ± 0.145, JI of 0.604 ± 0.163; p < 0.05). Conclusion Our newly developed H-DL model outperformed the individual shallow or deep U-DL models. The H-DL method combining multilevel features learned by both the shallow and deep DCNNs could achieve segmentation accuracy comparable to radiologists' segmentation for nodules with wide ranges of image characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon完成签到,获得积分0
刚刚
可靠的毛巾完成签到 ,获得积分10
1秒前
llhh2024完成签到,获得积分10
4秒前
xingxing完成签到 ,获得积分10
5秒前
Wdw2236完成签到 ,获得积分10
8秒前
拓小八完成签到,获得积分10
8秒前
像猫的狗完成签到 ,获得积分10
10秒前
12秒前
幽壑之潜蛟应助yangwei采纳,获得10
12秒前
Wang完成签到 ,获得积分10
19秒前
超帅的遥完成签到,获得积分10
20秒前
小伊001完成签到,获得积分10
21秒前
心灵美鑫完成签到 ,获得积分10
23秒前
KristenStewart完成签到,获得积分10
28秒前
娇娇大王完成签到,获得积分10
29秒前
32秒前
nt1119完成签到 ,获得积分10
36秒前
子蓼完成签到 ,获得积分10
43秒前
49秒前
Hubery完成签到 ,获得积分10
50秒前
Aixia完成签到 ,获得积分10
52秒前
xu完成签到 ,获得积分10
53秒前
甜美香之完成签到 ,获得积分10
56秒前
56秒前
陈荣完成签到 ,获得积分10
56秒前
感动依霜完成签到 ,获得积分10
1分钟前
1分钟前
胖一达完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
kingwill完成签到 ,获得积分0
1分钟前
Alan完成签到 ,获得积分10
1分钟前
拓跋半雪完成签到,获得积分10
1分钟前
赧赧完成签到 ,获得积分10
1分钟前
小青完成签到 ,获得积分10
1分钟前
Johnlian完成签到 ,获得积分10
1分钟前
笨笨青筠完成签到 ,获得积分10
1分钟前
浅暖完成签到 ,获得积分10
1分钟前
afar完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041202
关于积分的说明 8984111
捐赠科研通 2729784
什么是DOI,文献DOI怎么找? 1497204
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714