Efficient calculation of protein–ligand binding free energy using GFN methods: the power of the cluster model

配体(生物化学) 星团(航天器) 化学 计算化学 材料科学 化学物理 计算机科学 生物化学 受体 程序设计语言
作者
Yuan-Qiang Chen,Yan-Jing Sheng,Yu‐qiang Ma,Hong‐ming Ding
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:24 (23): 14339-14347 被引量:16
标识
DOI:10.1039/d2cp00161f
摘要

Protein-ligand interactions are crucial in many biochemical processes and biomedical applications, yet accurately calculating the binding free energy of the interactions still remains challenging. In this work, we systematically investigate the performance of a generic force field GFN-FF and some semi-empirical quantum mechanical (SQM) methods (GFNn, n = 0, 1, 2) in terms of the accuracy of the calculated binding free energy. It is found that the performance of the GFN-FF method is quite good in a neutral-ligand system since the Pearson correlation coefficient (rp) is 0.70 and the mean absolute error (MAE) is 5.49 kcal mol-1. However, it may fail in a charged-ligand system (the MAE is 18.98 kcal mol-1). Moreover, we also propose a cluster model (i.e., truncating the protein at a given cutoff) along with the SQM method in the GFN family. Importantly, the GFN2-xTB shows the best performance among the SQM methods (the MAE is 4.91 kcal mol-1 and 10.25 kcal mol-1 in the neutral-ligand and charged-ligand systems, respectively), much better than GFN-FF in the charged-ligand system. Notably, the computing cost of the GFN2-xTB in the appropriate cluster model is even lower than that of the GFN-FF (in the entire complex). The present study sheds some light on the potential power of the GFN family in the efficient calculation of the binding free energy in bio-systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助清风不渡夜采纳,获得10
1秒前
1秒前
xiongdi521完成签到,获得积分10
1秒前
3秒前
895_完成签到,获得积分10
4秒前
伴着星光归来完成签到,获得积分20
5秒前
Charail发布了新的文献求助10
6秒前
小蘑菇应助嘻嘻子采纳,获得10
6秒前
7秒前
star发布了新的文献求助10
7秒前
shallgun发布了新的文献求助10
8秒前
李健应助Glu采纳,获得10
9秒前
wanci应助coesite采纳,获得10
10秒前
脑洞疼应助小丁采纳,获得10
11秒前
11秒前
苏书白应助小强123采纳,获得10
11秒前
12秒前
CodeCraft应助Lixian采纳,获得10
12秒前
情怀应助拉面小丸子采纳,获得10
14秒前
14秒前
阿尔法完成签到,获得积分10
14秒前
我是老大应助aaao采纳,获得10
15秒前
shallgun完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
17秒前
huang完成签到,获得积分20
17秒前
阳光完成签到,获得积分10
17秒前
kate完成签到 ,获得积分10
18秒前
19秒前
冯11发布了新的文献求助10
19秒前
麦丰完成签到,获得积分10
19秒前
Charail完成签到,获得积分10
20秒前
20秒前
上官若男应助Chauncy采纳,获得10
20秒前
wnll发布了新的文献求助10
21秒前
苗条翠发布了新的文献求助10
21秒前
领衔发布了新的文献求助10
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149141
求助须知:如何正确求助?哪些是违规求助? 2800201
关于积分的说明 7838971
捐赠科研通 2457756
什么是DOI,文献DOI怎么找? 1308090
科研通“疑难数据库(出版商)”最低求助积分说明 628392
版权声明 601706