[Establishment and clinical validation of an artificial intelligence YOLOv51 model for the detection of precancerous lesions and superficial esophageal cancer in endoscopic procedure].

医学 上皮内瘤变 彩色内窥镜 食管癌 食管鳞状细胞癌 预测值 食管 放射科 内科学 癌症 结直肠癌 结肠镜检查 前列腺癌
出处
期刊:PubMed 卷期号:44 (5): 395-401 被引量:5
标识
DOI:10.3760/cma.j.cn112152-20211126-00877
摘要

Objective: To construct the diagnostic model of superficial esophageal squamous cell carcinoma (ESCC) and precancerous lesions in endoscopic images based on the YOLOv5l model by using deep learning method of artificial intelligence to improve the diagnosis of early ESCC and precancerous lesions under endoscopy. Methods: 13, 009 endoscopic esophageal images of white light imaging (WLI), narrow band imaging (NBI) and lugol chromoendoscopy (LCE) were collected from June 2019 to July 2021 from 1, 126 patients at the Cancer Hospital, Chinese Academy of Medical Sciences, including low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, ESCC limited to the mucosal layer, benign esophageal lesions and normal esophagus. By computerized random function method, the images were divided into a training set (11, 547 images from 1, 025 patients) and a validation set (1, 462 images from 101 patients). The YOLOv5l model was trained and constructed with the training set, and the model was validated with the validation set, while the validation set was diagnosed by two senior and two junior endoscopists, respectively, to compare the diagnostic results of YOLOv5l model and those of the endoscopists. Results: In the validation set, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the YOLOv5l model in diagnosing early ESCC and precancerous lesions in the WLI, NBI and LCE modes were 96.9%, 87.9%, 98.3%, 88.8%, 98.1%, and 98.6%, 89.3%, 99.5%, 94.4%, 98.2%, and 93.0%, 77.5%, 98.0%, 92.6%, 93.1%, respectively. The accuracy in the NBI model was higher than that in the WLI model (P<0.05) and lower than that in the LCE model (P<0.05). The diagnostic accuracies of YOLOv5l model in the WLI, NBI and LCE modes for the early ESCC and precancerous lesions were similar to those of the 2 senior endoscopists (96.9%, 98.8%, 94.3%, and 97.5%, 99.6%, 91.9%, respectively; P>0.05), but significantly higher than those of the 2 junior endoscopists (84.7%, 92.9%, 81.6% and 88.3%, 91.9%, 81.2%, respectively; P<0.05). Conclusion: The constructed YOLOv5l model has high accuracy in diagnosing early ESCC and precancerous lesions in endoscopic WLI, NBI and LCE modes, which can assist junior endoscopists to improve diagnosis and reduce missed diagnoses.目的: 以人工智能深度学习的方法,构建基于YOLOv5l模型的内镜图像早期食管癌及癌前病变的识别模型,以提高内镜下早期食管癌及癌前病变的诊断水平。 方法: 收集2019年6月至2021年7月中国医学科学院肿瘤医院1 126例患者的白光成像(WLI)、窄带光成像(NBI)和卢戈液染色(LCE)的内镜食管图像13 009幅,包括低级别上皮内瘤变、高级别上皮内瘤变、限于黏膜层的食管鳞癌、良性食管病变及正常食管。通过计算机随机函数方法,分为训练集(1 025例患者的11 547幅图像)和验证集(101例患者的1 462幅图像)。以训练集训练、构建YOLOv5l模型,以验证集验证该模型,同时由2名高年资和2名低年资内镜医师分别对验证集进行诊断,比较YOLOv5l模型与内镜医师的诊断结果。 结果: 在验证集中,YOLOv5l模型在WLI、NBI和LCE模式下诊断早期食管癌及癌前病变的准确度、灵敏度、特异度、阳性预测值(PPV)和阴性预测值(NPV)分别为96.9%、87.9%、98.3%、88.8%和98.1%, 98.6%、89.3%、99.5%、94.4%和98.2%,93.0%、77.5%、98.0%、92.6%和93.1%。NBI模式下的准确度高于WLI模式(P<0.05),LCE模式下的准确度低于WLI(P<0.05)。YOLOv5l模型在WLI、NBI和LCE模式下诊断早期食管癌及癌前病变的准确度与2位高年资内镜医师(分别为96.9%、98.8%和94.3%,97.5%、99.6%和91.9%;均P>0.05)相当,但明显高于2位低年资内镜医师(分别为84.7%、92.9%和81.6%,88.3%、91.9%和81.2%;均P<0.05)。 结论: 所构建的YOLOv5l模型在内镜WLI、NBI和LCE模式下诊断早期食管癌及癌前病变中具有较高的准确度,可以辅助低年资内镜医师提高诊断水平、减少漏诊。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Promise完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
星辰发布了新的文献求助10
3秒前
寒冷羿发布了新的文献求助10
4秒前
jovrtic发布了新的文献求助10
5秒前
AYAHEI发布了新的文献求助10
5秒前
5秒前
FashionBoy应助风趣惜霜采纳,获得10
5秒前
华仔应助elsie采纳,获得10
6秒前
lan发布了新的文献求助10
7秒前
顾暖发布了新的文献求助10
7秒前
YZ发布了新的文献求助30
7秒前
LiYong完成签到,获得积分10
7秒前
9秒前
9秒前
寒冷羿完成签到,获得积分10
10秒前
10秒前
11秒前
吧嗒嗒发布了新的文献求助10
11秒前
终点站完成签到 ,获得积分10
12秒前
keyou完成签到 ,获得积分10
13秒前
CADD_Kelvin发布了新的文献求助10
14秒前
xiaojing发布了新的文献求助10
15秒前
Jasper应助haitun采纳,获得10
15秒前
ESS关注了科研通微信公众号
15秒前
研友_VZG7GZ应助北雁采纳,获得10
18秒前
小马甲应助sci_zt采纳,获得10
18秒前
112关注了科研通微信公众号
20秒前
毛豆应助夏天采纳,获得10
22秒前
英姑应助CADD_Kelvin采纳,获得10
23秒前
望月完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
26秒前
27秒前
27秒前
英俊的铭应助xiaojing采纳,获得10
28秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462411
求助须知:如何正确求助?哪些是违规求助? 3055964
关于积分的说明 9050078
捐赠科研通 2745534
什么是DOI,文献DOI怎么找? 1506438
科研通“疑难数据库(出版商)”最低求助积分说明 696110
邀请新用户注册赠送积分活动 695633