Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI

磁共振成像 分割 医学 无线电技术 全身成像 人工智能 多发性骨髓瘤 计算机科学 放射科 核医学 内科学
作者
Markus Wennmann,André Klein,Fabian Bauer,Jiří Chmelík,Martin Grözinger,Charlotte Uhlenbrock,Jakob Lochner,Tobias Nonnenmacher,Lukas T. Rotkopf,Sandra Sauer,Thomas Hielscher,Michael Götz,Ralf Floca,Peter Neher,David Bonekamp,Jens Hillengaß,Jens Kleesiek,Niels Weinhold,Tim Frederik Weber,Hartmut Goldschmidt,Stefan Delorme,Klaus H. Maier‐Hein,Heinz‐Peter Schlemmer
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (11): 752-763 被引量:21
标识
DOI:10.1097/rli.0000000000000891
摘要

Objectives Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS). Materials and Methods This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations. Results The “multilabel nnU-Net” segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3–8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3–8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively). Conclusions This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honphyjiang完成签到,获得积分20
刚刚
shimenwanzhao完成签到 ,获得积分0
1秒前
个性的大地完成签到,获得积分10
1秒前
滋达不溜完成签到,获得积分10
1秒前
健壮丹妗完成签到 ,获得积分10
1秒前
zuo发布了新的文献求助10
1秒前
2秒前
lanrete完成签到,获得积分10
2秒前
yzlsci完成签到,获得积分0
3秒前
研友_Z30GJ8完成签到 ,获得积分10
4秒前
略略略完成签到 ,获得积分10
4秒前
桶装乐事完成签到,获得积分10
4秒前
Cherish发布了新的文献求助10
6秒前
WANGs完成签到,获得积分10
6秒前
Shaynin完成签到,获得积分10
7秒前
xin_you完成签到,获得积分10
9秒前
星丶完成签到 ,获得积分10
9秒前
大王869完成签到 ,获得积分10
10秒前
宇文数学完成签到 ,获得积分10
10秒前
健壮的思枫完成签到,获得积分10
12秒前
i羽翼深蓝i完成签到,获得积分10
12秒前
13秒前
ppprotein完成签到,获得积分10
13秒前
小七完成签到 ,获得积分10
13秒前
郑思榆完成签到 ,获得积分10
14秒前
ling_lz完成签到,获得积分10
15秒前
yangjiao完成签到,获得积分10
15秒前
在在完成签到 ,获得积分10
15秒前
Clover04完成签到,获得积分10
16秒前
飘逸的平松完成签到 ,获得积分10
16秒前
Cherish完成签到,获得积分10
16秒前
taoli发布了新的文献求助10
18秒前
瓦斯兰德笑川皇完成签到,获得积分10
20秒前
冯依梦完成签到 ,获得积分10
21秒前
欣喜豌豆完成签到,获得积分10
22秒前
典雅葶完成签到 ,获得积分10
22秒前
顺心的惜蕊完成签到 ,获得积分10
22秒前
金花猪饲养员完成签到,获得积分10
23秒前
CodeCraft应助五爷采纳,获得10
23秒前
Huanglj完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565