Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI

磁共振成像 分割 医学 无线电技术 全身成像 人工智能 多发性骨髓瘤 计算机科学 放射科 核医学 内科学
作者
Markus Wennmann,André Klein,Fabian Bauer,Jiří Chmelík,Martin Grözinger,Charlotte Uhlenbrock,Jakob Lochner,Tobias Nonnenmacher,Lukas T. Rotkopf,Sandra Sauer,Thomas Hielscher,Michael Götz,Ralf Floca,Peter Neher,David Bonekamp,Jens Hillengaß,Jens Kleesiek,Niels Weinhold,Tim Frederik Weber,Hartmut Goldschmidt,Stefan Delorme,Klaus H. Maier‐Hein,Heinz‐Peter Schlemmer
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (11): 752-763 被引量:21
标识
DOI:10.1097/rli.0000000000000891
摘要

Objectives Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS). Materials and Methods This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations. Results The “multilabel nnU-Net” segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3–8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3–8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively). Conclusions This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwkk完成签到 ,获得积分10
2秒前
予安发布了新的文献求助10
3秒前
科研顺利完成签到,获得积分10
3秒前
爆米花应助mof采纳,获得10
4秒前
yuanyuan发布了新的文献求助10
4秒前
完美世界应助称心的乘云采纳,获得10
4秒前
领导范儿应助典雅的俊驰采纳,获得10
5秒前
dkm关注了科研通微信公众号
5秒前
5秒前
南柯一梦完成签到 ,获得积分10
6秒前
西蓝花香菜完成签到 ,获得积分10
6秒前
Orange应助段绮彤采纳,获得10
7秒前
7秒前
8秒前
魏少爷发布了新的文献求助10
9秒前
9秒前
9秒前
木木发布了新的文献求助10
10秒前
淘宝叮咚发布了新的文献求助10
10秒前
Jason-1024完成签到,获得积分10
10秒前
优雅的忆霜完成签到,获得积分10
11秒前
淘宝叮咚发布了新的文献求助10
11秒前
14秒前
ywl发布了新的文献求助10
14秒前
11111完成签到,获得积分20
14秒前
roxy发布了新的文献求助10
15秒前
Rondab应助材料小白采纳,获得10
15秒前
小李发布了新的文献求助10
15秒前
李健的小迷弟应助liars采纳,获得10
16秒前
孙成成发布了新的文献求助10
17秒前
17秒前
yunyunyun发布了新的文献求助10
17秒前
ORANGE完成签到,获得积分10
19秒前
老大蒂亚戈完成签到,获得积分10
19秒前
科目三应助无限曲奇采纳,获得10
20秒前
lin发布了新的文献求助10
21秒前
ZhiyunXu2012完成签到 ,获得积分10
21秒前
今后应助tingting9采纳,获得10
21秒前
木木完成签到,获得积分10
22秒前
HYHY完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338