Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI

磁共振成像 分割 医学 无线电技术 全身成像 人工智能 多发性骨髓瘤 计算机科学 放射科 核医学 内科学
作者
Markus Wennmann,André Klein,Fabian Bauer,Jiří Chmelík,Martin Grözinger,Charlotte Uhlenbrock,Jakob Lochner,Tobias Nonnenmacher,Lukas T. Rotkopf,Sandra Sauer,Thomas Hielscher,Michael Götz,Ralf Floca,Peter Neher,David Bonekamp,Jens Hillengaß,Jens Kleesiek,Niels Weinhold,Tim Frederik Weber,Hartmut Goldschmidt
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (11): 752-763 被引量:39
标识
DOI:10.1097/rli.0000000000000891
摘要

Objectives Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS). Materials and Methods This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations. Results The “multilabel nnU-Net” segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3–8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3–8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively). Conclusions This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷芝完成签到,获得积分10
刚刚
小鱼完成签到,获得积分10
2秒前
2秒前
骜111完成签到,获得积分10
3秒前
Eureka完成签到,获得积分10
4秒前
yy发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
眼睛大含双完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
Singularity应助藿藿采纳,获得10
9秒前
10秒前
Frim发布了新的文献求助10
11秒前
11秒前
霸气采文发布了新的文献求助10
13秒前
住在月亮隔壁完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
wmecjtu完成签到,获得积分20
14秒前
平淡如天完成签到,获得积分10
14秒前
发发发发布了新的文献求助10
14秒前
fight完成签到,获得积分10
15秒前
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
爆米花应助张展鹏采纳,获得10
19秒前
20秒前
Singularity应助藿藿采纳,获得10
20秒前
上官若男应助wmecjtu采纳,获得30
21秒前
小黄在忙完成签到,获得积分20
23秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770111
求助须知:如何正确求助?哪些是违规求助? 5582948
关于积分的说明 15423385
捐赠科研通 4903664
什么是DOI,文献DOI怎么找? 2638315
邀请新用户注册赠送积分活动 1586143
关于科研通互助平台的介绍 1541287