已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic consistency learning on manifold for source data-free unsupervised domain adaptation

聚类分析 计算机科学 人工智能 歧管(流体力学) 歧管对齐 熵(时间箭头) 一致性(知识库) 非线性降维 模式识别(心理学) 理论计算机科学 降维 物理 机械工程 量子力学 工程类
作者
Song Tang,Yan Zou,Zihao Song,Jianzhi Lyu,Lijuan Chen,Mao Ye,Shouming Zhong,Jianwei Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:152: 467-478 被引量:7
标识
DOI:10.1016/j.neunet.2022.05.015
摘要

Recently, source data-free unsupervised domain adaptation (SFUDA) attracts increasing attention. Current work shows that the geometry of the target data is helpful to solving this challenging problem. However, these methods define the geometric structures in Euclidean space. The geometry cannot completely draw the semantic relationship between the target data distributed on a manifold. This article proposed a new SFUDA method, semantic consistency learning on manifold (SCLM), to address this problem. Firstly, we generated pseudo-labels for the target data using a new clustering method, EntMomClustering, that enhanced k-means clustering by fusing the entropy momentum. Secondly, we constructed semantic neighbor topology (SNT) to capture complete geometric information on the manifold. Specifically, in SNT, the global neighbor was detected by a developed collaborative representation-based manifold projection, while the local neighbors were obtained by similarity comparison. Thirdly, we performed a semantic consistency learning on SNT to drive a new kind of deep clustering where SNT was taken as the basic clustering unit. To ensure SNT move as entirety, in the developed objective, the entropy regulator was constructed based on a semantic mixture fused on SNT, while the self-supervised regulator encouraged similar classification on SNT. Experiments on three benchmark datasets show that our method achieves state-of-the-art results. The code is available on https://github.com/tntek/SCLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咫尺天涯发布了新的文献求助10
1秒前
遗梦梦完成签到,获得积分10
2秒前
仲滋滋发布了新的文献求助10
3秒前
今后应助midokaori采纳,获得10
6秒前
仔仔完成签到 ,获得积分10
8秒前
852应助SHITOU采纳,获得10
9秒前
Jes完成签到,获得积分10
9秒前
Eason_C完成签到 ,获得积分10
10秒前
Skywalker完成签到,获得积分10
10秒前
泡泡完成签到,获得积分10
11秒前
肖治民关注了科研通微信公众号
11秒前
大象放冰箱完成签到,获得积分10
11秒前
昵称666应助大家好采纳,获得10
13秒前
研友_VZG7GZ应助大家好采纳,获得10
13秒前
追忆应助大家好采纳,获得10
13秒前
昵称666应助大家好采纳,获得10
13秒前
追忆应助大家好采纳,获得10
13秒前
追忆应助大家好采纳,获得10
13秒前
helpme完成签到,获得积分10
14秒前
HuY完成签到 ,获得积分10
14秒前
cc应助大象放冰箱采纳,获得10
16秒前
清新的谷南完成签到,获得积分10
16秒前
程住气完成签到 ,获得积分10
16秒前
LYL完成签到,获得积分10
16秒前
Persist完成签到 ,获得积分10
18秒前
研友_VZG7GZ应助clown采纳,获得10
18秒前
李爱国应助hihihi采纳,获得10
19秒前
遇上就这样吧完成签到,获得积分0
20秒前
20秒前
Aaron完成签到 ,获得积分0
22秒前
23秒前
struggling2026完成签到 ,获得积分10
23秒前
小菡菡发布了新的文献求助10
24秒前
26秒前
midokaori发布了新的文献求助10
27秒前
Xx完成签到,获得积分10
28秒前
彩色冥幽完成签到 ,获得积分10
29秒前
SHITOU发布了新的文献求助10
31秒前
31秒前
遗梦梦发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234