Semantic consistency learning on manifold for source data-free unsupervised domain adaptation

聚类分析 计算机科学 人工智能 歧管(流体力学) 歧管对齐 熵(时间箭头) 一致性(知识库) 非线性降维 模式识别(心理学) 理论计算机科学 降维 物理 机械工程 量子力学 工程类
作者
Song Tang,Yan Zou,Zihao Song,Jianzhi Lyu,Lijuan Chen,Mao Ye,Shouming Zhong,Jianwei Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:152: 467-478 被引量:7
标识
DOI:10.1016/j.neunet.2022.05.015
摘要

Recently, source data-free unsupervised domain adaptation (SFUDA) attracts increasing attention. Current work shows that the geometry of the target data is helpful to solving this challenging problem. However, these methods define the geometric structures in Euclidean space. The geometry cannot completely draw the semantic relationship between the target data distributed on a manifold. This article proposed a new SFUDA method, semantic consistency learning on manifold (SCLM), to address this problem. Firstly, we generated pseudo-labels for the target data using a new clustering method, EntMomClustering, that enhanced k-means clustering by fusing the entropy momentum. Secondly, we constructed semantic neighbor topology (SNT) to capture complete geometric information on the manifold. Specifically, in SNT, the global neighbor was detected by a developed collaborative representation-based manifold projection, while the local neighbors were obtained by similarity comparison. Thirdly, we performed a semantic consistency learning on SNT to drive a new kind of deep clustering where SNT was taken as the basic clustering unit. To ensure SNT move as entirety, in the developed objective, the entropy regulator was constructed based on a semantic mixture fused on SNT, while the self-supervised regulator encouraged similar classification on SNT. Experiments on three benchmark datasets show that our method achieves state-of-the-art results. The code is available on https://github.com/tntek/SCLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的唯雪完成签到,获得积分10
1秒前
情怀应助Flac采纳,获得10
1秒前
搜集达人应助CX330采纳,获得10
3秒前
chemy完成签到,获得积分10
3秒前
南浔完成签到,获得积分10
3秒前
3秒前
爱money的傲之完成签到,获得积分10
4秒前
Jiayee发布了新的文献求助20
4秒前
4秒前
5秒前
优雅代玉发布了新的文献求助10
5秒前
5秒前
魔幻半仙完成签到 ,获得积分10
5秒前
6秒前
科研通AI5应助乘风的法袍采纳,获得10
6秒前
7秒前
Peng应助Rixxed采纳,获得10
7秒前
8秒前
8秒前
田様应助lixuegang2023采纳,获得10
8秒前
九日科研ing完成签到,获得积分0
9秒前
大胆瑛完成签到,获得积分10
9秒前
六月歌者完成签到,获得积分10
9秒前
foceman发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
carl发布了新的文献求助10
12秒前
12秒前
12秒前
852应助潇笑采纳,获得10
12秒前
奶糖不太甜完成签到,获得积分10
12秒前
脑洞疼应助俭朴的发带采纳,获得30
13秒前
专注的班发布了新的文献求助10
14秒前
14秒前
丘比特应助咸鱼采纳,获得10
15秒前
优雅代玉完成签到,获得积分20
15秒前
huk发布了新的文献求助10
15秒前
晨儿发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772214
求助须知:如何正确求助?哪些是违规求助? 3317539
关于积分的说明 10186245
捐赠科研通 3032728
什么是DOI,文献DOI怎么找? 1663679
邀请新用户注册赠送积分活动 795880
科研通“疑难数据库(出版商)”最低求助积分说明 757089