In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials

材料科学 热分解 拉曼光谱 热稳定性 电解质 化学工程 阴极 电极 冶金 化学 物理化学 有机化学 光学 物理 工程类
作者
Jiyang Li,Haiming Hua,Xiangbang Kong,Huiya Yang,Pengpeng Dai,Jing Zeng,Jinbao Zhao
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:46: 90-99 被引量:37
标识
DOI:10.1016/j.ensm.2022.01.007
摘要

The thermal stability of cathode materials is very important to the safety of lithium-ion batteries (LIBs), especially the promising high-nickel LiNixCoyMn1-x-yO2 (NCM, 0.6 ≤ x < 1) materials. Generally, the thermal decomposition is believed to begin at the electrode/electrolyte interface. However, due to the lack of suitable diagnostic tools, current recognition of their near-surface structural thermal stability still remains limited. Raman spectroscopy can not only sensitively reflect changes in the local metal-oxygen coordination structure, but also conveniently detect the near-surface structural information with the suitable spatial resolution and penetration depth. Here, through developing the in-situ heating Raman spectroscopy method, the thermal decomposition process of the near-surface structure of the fully charged high-nickel NCM material is confirmed, which is much lower than existing recognition. Interestingly, the thermal decomposition of the secondary particle bulk is evidenced to be obviously lagging behind the particle surface, exhibiting a centripetally diffused thermal decomposition within the secondary particle. In addition, the near-surface structural thermal stability is revealed to be significantly modulated by the electrolyte components by means of the dehydrogenation, adsorption, oxidation of carbonate solvents and the decomposition of lithium salt. Meanwhile, it weakens with the increased surface oxidation state of high-nickel NCM materials. Consequently, this work can remind us to rethink the true thermal stability of high-nickel NCM materials and guide targeted improvement of their interfacial thermal stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
choco发布了新的文献求助10
刚刚
1秒前
李健的小迷弟应助sun采纳,获得10
1秒前
Jzhang应助liyuchen采纳,获得10
1秒前
魏伯安发布了新的文献求助30
1秒前
jjjjjj发布了新的文献求助30
3秒前
4秒前
伯赏诗霜发布了新的文献求助10
4秒前
糟糕的鹏飞完成签到 ,获得积分10
5秒前
5秒前
欢呼凡旋完成签到,获得积分10
6秒前
韩邹光完成签到,获得积分10
8秒前
xg发布了新的文献求助10
8秒前
9秒前
dktrrrr完成签到,获得积分10
9秒前
季生完成签到,获得积分10
12秒前
徐徐完成签到,获得积分10
12秒前
13秒前
13秒前
haku完成签到,获得积分10
15秒前
可爱的函函应助laodie采纳,获得10
17秒前
Singularity应助忆楠采纳,获得10
18秒前
19秒前
请叫我风吹麦浪应助PengHu采纳,获得30
20秒前
jjjjjj完成签到,获得积分10
20秒前
凝子老师发布了新的文献求助10
22秒前
22秒前
橙子fy16_发布了新的文献求助10
24秒前
cookie完成签到,获得积分10
24秒前
柒柒的小熊完成签到,获得积分10
25秒前
25秒前
Hello应助萌之痴痴采纳,获得10
26秒前
hahaer完成签到,获得积分10
28秒前
领导范儿应助失眠虔纹采纳,获得10
29秒前
30秒前
Owen应助凝子老师采纳,获得10
33秒前
33秒前
南宫炽滔完成签到 ,获得积分10
35秒前
35秒前
丘比特应助飞羽采纳,获得10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849