A Classification Algorithm for Types of Diabetes in Chronic Pancreatitis Using Epidemiological Characteristics

医学 胰腺炎 前瞻性队列研究 2型糖尿病 糖尿病 内科学 流行病学 队列 算法 胃肠病学 内分泌学 数学
作者
Marinus A. Kempeneers,Yama Issa,Usama Ahmed Ali,Marco J. Bruno,Erwin J. M. van Geenen,Jeanin E. van Hooft,Tessa E. H. Römkens,Peter D. Siersema,B.W.M. Spanier,Ibtisam Yahya,J. Hans DeVries,Marc G. Besselink,Hjalmar C. van Santvoort,Marja A. Boermeester
出处
期刊:Pancreas [Ovid Technologies (Wolters Kluwer)]
卷期号:50 (10): 1407-1414 被引量:1
标识
DOI:10.1097/mpa.0000000000001937
摘要

We developed an epidemiological algorithm to classify types of diabetes mellitus (DM) in chronic pancreatitis (CP), and applied it to a nationwide prospective longitudinal cohort of CP patients.Patients with definite CP (M-ANNHEIM criteria) were classified as having DM types 1, 2, or 3c, or no DM using an algorithm based on epidemiological characteristics: DM onset in relation to age, CP onset, exocrine insufficiency. Variables associated with development of DM were identified.Of 1130 included patients with CP between 2011 and 2018, 368 patients (33%) had DM at inclusion. Among patients with DM, 11 were classified as having type 1 (3%), 159 as type 2 (43%), and 191 as type 3c (52%). Patients with DM type 3c had longer duration of CP, more severe pain and lower physical quality of life. During longitudinal follow-up of median 47 months, 120 (20%) patients developed DM, of which 99 patients were classified as type 3c. This was independently associated with pancreatic endoscopy and surgery.The described algorithm based on epidemiological characteristics can help to classify types of DM in patients with CP. Diabetes mellitus type 3c is associated with longer duration of CP and more severe CP sequelae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sptyzl完成签到 ,获得积分10
1秒前
彭于晏应助mnm采纳,获得10
1秒前
叙余完成签到 ,获得积分10
1秒前
1秒前
狗狗应助April采纳,获得20
1秒前
科研通AI2S应助笑笑采纳,获得10
2秒前
靳乐乐完成签到,获得积分10
2秒前
ccyrichard完成签到,获得积分10
2秒前
3秒前
su完成签到,获得积分20
3秒前
天天快乐应助刘怀蕊采纳,获得10
3秒前
3秒前
t_suo发布了新的文献求助30
4秒前
LJL发布了新的文献求助10
5秒前
xyz发布了新的文献求助10
5秒前
婷婷完成签到,获得积分10
5秒前
翔哥完成签到,获得积分10
6秒前
shotgod发布了新的文献求助10
6秒前
消烦员完成签到 ,获得积分10
6秒前
杳鸢应助su采纳,获得30
8秒前
good发布了新的文献求助10
8秒前
chenxin7271完成签到,获得积分10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
马蹄应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
研友_LX66qZ完成签到,获得积分10
8秒前
传奇3应助科研通管家采纳,获得30
9秒前
Akim应助火星上的听云采纳,获得10
9秒前
唐博凡应助科研通管家采纳,获得10
9秒前
西柚完成签到,获得积分10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
kingwill应助科研通管家采纳,获得20
9秒前
SciGPT应助洛鸢采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762