清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven distributionally robust generation of time-varying flow corridor networks under demand uncertainty

计算机科学 可靠性(半导体) 流量网络 吞吐量 流量(数学) 网络规划与设计 流量(计算机网络) 软件部署 模拟 数学优化 实时计算 计算机网络 操作系统 电信 物理 量子力学 数学 功率(物理) 几何学 无线
作者
Bojia Ye,Chao Ni,Yong Tian,Washington Y. Ochieng
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:136: 103546-103546 被引量:2
标识
DOI:10.1016/j.trc.2021.103546
摘要

• Accumulated departure delays extracted from historical data for flow corridors design. • Time-varying flow corridor network shows higher occupancies better connectivity and utilization. • Distributionally robust optimization approach ensure efficiency and reliability. • Trade-off between the delay alleviation and served flights by extra travel distance rate. Flow corridors are novel long tube-shaped, high-density airspace structure (like freeways in sky) which could achieve a very high throughput, while allowing traffic to flexible deployment and shift as necessary. In current research, the design of flow corridor networks cannot capture either the dynamic nature of traffic or the uncertainty in demand variations, which may fail to ensure satisfactory efficiency and reliability. In order to propose more efficient and reliable flow corridor networks for practice operations, this paper is devoted to propose a data-driven framework for the robust generation of time-varying flow corridor networks under demand uncertainty. Specifically, a delay-based method is proposed firstly for optimal design of a static flow corridors network which could be more effective in absorbing frequent flight delays from today’s air transportation system. Next, a multi-objective combinational optimization model is presented with its fast approximate evolutionary algorithm for generating time-varying flow corridor networks. Finally, to handle uncertainties in traffic operations over time, the data-driven Distributionally Robust Optimization (DRO) approach is employed to ensure the efficiency and reliability of the proposed networks. The framework is applied to the Chinese airspace to design a robust national-wide time-varying flow corridor network for numerical test. The numerical test results confirm that the proposed time-varying networks outperform previous designs in the average alleviated delays, average occupancy, and activation time with only a small trade-off in the number of served flights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈月婷完成签到 ,获得积分10
35秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
爱静静应助科研通管家采纳,获得10
42秒前
imi完成签到 ,获得积分0
51秒前
mm完成签到,获得积分10
1分钟前
kuyi完成签到 ,获得积分10
1分钟前
Guo完成签到 ,获得积分10
1分钟前
mengli完成签到 ,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
彩色的芷容完成签到 ,获得积分10
3分钟前
叶YE发布了新的文献求助30
3分钟前
科目三应助叶YE采纳,获得10
3分钟前
重要铃铛完成签到 ,获得积分10
4分钟前
叶YE完成签到,获得积分10
4分钟前
Arthur完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
xiaxiao应助科研通管家采纳,获得100
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671300
求助须知:如何正确求助?哪些是违规求助? 3228149
关于积分的说明 9778643
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003