A two-stage joint operation and planning model for sizing and siting of electrical energy storage devices considering demand response programs

尺寸 时间范围 地铁列车时刻表 数学优化 计算机科学 粒子群优化 遗传算法 需求响应 储能 线性规划 整数规划 工程类 数学 功率(物理) 电气工程 艺术 物理 量子力学 视觉艺术 操作系统
作者
Mohammad Sadegh Javadi,Matthew Gough,Seyed Amir Mansouri,Amir Ahmarinejad,Emad Nematbakhsh,Sérgio F. Santos,João P.S. Catalão
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:138: 107912-107912 被引量:55
标识
DOI:10.1016/j.ijepes.2021.107912
摘要

This study describes a computationally efficient model for the optimal sizing and siting of Electrical Energy Storage Devices (EESDs) in Smart Grids (SG), accounting for the presence of time-varying electricity tariffs due to Demand Response Program (DRP) participation. The joint planning and operation problem for optimal siting and sizing of the EESD is proposed in a two-stage optimization problem. In this regard, the long-term decision variables deal were the size and location of the EESDs and have been considered at the master level while the operating point of the generation units and EESDs is determined by the slave stage of the model utilizing a standard mixed-integer linear programming model. To examine the effectiveness of the model in the slave sub-problem, the operation model is solved for different working days of different seasons. Binary Particle Swarm Optimization (BPSO) and Binary Genetic Algorithm (BGA) have been used at the master level to propose different scenarios for investment in the planning stage. The slave problem optimizes the model in terms of the short-term horizon (day-ahead). Additionally, the slave problem determines the optimal schedule for an SG considering the presence of EESD (with sizes and locations provided by the upper level). The electricity price fluctuates throughout the day, according to a Time-of-Use (ToU) DRP pricing scheme. Moreover, the impacts of DRPs have been addressed in the slave stage. The proposed model is examined on a modified IEEE 24-Bus test system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王玉完成签到 ,获得积分10
刚刚
1秒前
华仔应助或许度采纳,获得10
1秒前
聪明钢铁侠应助天之道采纳,获得10
1秒前
无限毛豆完成签到 ,获得积分10
2秒前
3秒前
高高发布了新的文献求助10
3秒前
聪慧烤鸡发布了新的文献求助10
3秒前
5秒前
5秒前
Guo99完成签到,获得积分10
5秒前
在水一方应助元谷雪采纳,获得10
6秒前
6秒前
昭昭找不到完成签到,获得积分10
7秒前
7秒前
清脆剑封完成签到,获得积分10
8秒前
8秒前
小米粥发布了新的文献求助10
8秒前
9秒前
10秒前
bsnc完成签到,获得积分10
10秒前
安妮发布了新的文献求助10
10秒前
外向冰绿完成签到,获得积分10
11秒前
传奇3应助高高采纳,获得10
11秒前
风清扬发布了新的文献求助10
11秒前
郝誉发布了新的文献求助10
11秒前
Jasper应助欣喜易形采纳,获得10
12秒前
Uranus发布了新的文献求助10
13秒前
ALDRC完成签到,获得积分10
13秒前
14秒前
或许度发布了新的文献求助10
14秒前
SciGPT应助Xl采纳,获得10
15秒前
wanci应助明理的帆布鞋采纳,获得10
17秒前
科研通AI6应助fzzf采纳,获得10
17秒前
小二郎应助北克采纳,获得10
17秒前
顾矜应助感动的小懒虫采纳,获得10
17秒前
小火花完成签到,获得积分10
18秒前
19秒前
JM关闭了JM文献求助
20秒前
烟花应助微光熠采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277