A two-stage joint operation and planning model for sizing and siting of electrical energy storage devices considering demand response programs

尺寸 时间范围 地铁列车时刻表 数学优化 计算机科学 粒子群优化 遗传算法 需求响应 储能 线性规划 整数规划 工程类 数学 功率(物理) 电气工程 艺术 物理 量子力学 视觉艺术 操作系统
作者
Mohammad Sadegh Javadi,Matthew Gough,Seyed Amir Mansouri,Amir Ahmarinejad,Emad Nematbakhsh,Sérgio F. Santos,João P.S. Catalão
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:138: 107912-107912 被引量:55
标识
DOI:10.1016/j.ijepes.2021.107912
摘要

This study describes a computationally efficient model for the optimal sizing and siting of Electrical Energy Storage Devices (EESDs) in Smart Grids (SG), accounting for the presence of time-varying electricity tariffs due to Demand Response Program (DRP) participation. The joint planning and operation problem for optimal siting and sizing of the EESD is proposed in a two-stage optimization problem. In this regard, the long-term decision variables deal were the size and location of the EESDs and have been considered at the master level while the operating point of the generation units and EESDs is determined by the slave stage of the model utilizing a standard mixed-integer linear programming model. To examine the effectiveness of the model in the slave sub-problem, the operation model is solved for different working days of different seasons. Binary Particle Swarm Optimization (BPSO) and Binary Genetic Algorithm (BGA) have been used at the master level to propose different scenarios for investment in the planning stage. The slave problem optimizes the model in terms of the short-term horizon (day-ahead). Additionally, the slave problem determines the optimal schedule for an SG considering the presence of EESD (with sizes and locations provided by the upper level). The electricity price fluctuates throughout the day, according to a Time-of-Use (ToU) DRP pricing scheme. Moreover, the impacts of DRPs have been addressed in the slave stage. The proposed model is examined on a modified IEEE 24-Bus test system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何pengda完成签到,获得积分10
1秒前
函王完成签到,获得积分10
1秒前
卡卡西应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
ED应助科研通管家采纳,获得10
1秒前
卡卡西应助科研通管家采纳,获得10
1秒前
wangling2333应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
卡卡西应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
卡卡西应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得30
2秒前
mostspecial应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
卡卡西应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
好好看文献完成签到,获得积分10
3秒前
酷波er应助微笑的寒梦采纳,获得10
3秒前
鬼笔环肽发布了新的文献求助10
4秒前
4秒前
大脚仙完成签到,获得积分10
4秒前
Landau完成签到,获得积分20
5秒前
learner1994发布了新的文献求助10
5秒前
无限海白完成签到,获得积分10
5秒前
赫尔发布了新的文献求助10
5秒前
dingdingding完成签到,获得积分10
6秒前
安七完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
古月完成签到 ,获得积分10
7秒前
红红发布了新的文献求助10
8秒前
蔬菜人完成签到,获得积分10
9秒前
个性太英完成签到,获得积分10
9秒前
10秒前
微笑的寒梦完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582