VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase for Python

代码库 计算机科学 Python(编程语言) 文字2vec 源代码 人工智能 安全编码 机器学习 软件 软件错误 计算机安全 软件安全保证 程序设计语言 信息安全 嵌入 保安服务
作者
Laura Wartschinski,Yannic Noller,Thomas Vogel,Timo Kehrer,Lars Grunske
出处
期刊:Information & Software Technology [Elsevier]
卷期号:144: 106809-106809 被引量:59
标识
DOI:10.1016/j.infsof.2021.106809
摘要

Identifying potential vulnerable code is important to improve the security of our software systems. However, the manual detection of software vulnerabilities requires expert knowledge and is time-consuming, and must be supported by automated techniques. Such automated vulnerability detection techniques should achieve a high accuracy, point developers directly to the vulnerable code fragments, scale to real-world software, generalize across the boundaries of a specific software project, and require no or only moderate setup or configuration effort. In this article, we present Vudenc (Vulnerability Detection with Deep Learning on a Natural Codebase), a deep learning-based vulnerability detection tool that automatically learns features of vulnerable code from a large and real-world Python codebase. Vudenc applies a word2vec model to identify semantically similar code tokens and to provide a vector representation. A network of long-short-term memory cells (LSTM) is then used to classify vulnerable code token sequences at a fine-grained level, highlight the specific areas in the source code that are likely to contain vulnerabilities, and provide confidence levels for its predictions. To evaluate Vudenc, we used 1,009 vulnerability-fixing commits from different GitHub repositories that contain seven different types of vulnerabilities (SQL injection, XSS, Command injection, XSRF, Remote code execution, Path disclosure, Open redirect) for training. In the experimental evaluation, Vudenc achieves a recall of 78%–87%, a precision of 82%–96%, and an F1 score of 80%–90%. Vudenc’s code, the datasets for the vulnerabilities, and the Python corpus for the word2vec model are available for reproduction. Our experimental results suggest that Vudenc is capable of outperforming most of its competitors in terms of vulnerably detection capabilities on real-world software. Comparable accuracy was only achieved on synthetic benchmarks, within single projects, or on a much coarser level of granularity such as entire source code files.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助博ge采纳,获得10
1秒前
1秒前
Lotus发布了新的文献求助10
2秒前
3秒前
仁爱仙人掌完成签到,获得积分10
5秒前
ywang发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
ewqw关注了科研通微信公众号
8秒前
曦小蕊完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
奋斗灵波发布了新的文献求助10
10秒前
药学牛马发布了新的文献求助10
10秒前
10秒前
科研通AI5应助WZ0904采纳,获得10
11秒前
叶未晞yi发布了新的文献求助10
12秒前
ipeakkka发布了新的文献求助10
13秒前
Jzhang应助迷人的映雁采纳,获得10
13秒前
13秒前
zzz完成签到,获得积分10
14秒前
14秒前
小安发布了新的文献求助10
14秒前
15秒前
叶未晞yi完成签到,获得积分10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得30
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
kilig应助科研通管家采纳,获得10
18秒前
18秒前
华仔应助科研通管家采纳,获得30
18秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
博ge发布了新的文献求助10
20秒前
21秒前
葶儿发布了新的文献求助10
21秒前
hgcyp完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824