VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase for Python

代码库 计算机科学 Python(编程语言) 文字2vec 源代码 人工智能 安全编码 机器学习 软件 软件错误 计算机安全 软件安全保证 程序设计语言 信息安全 嵌入 保安服务
作者
Laura Wartschinski,Yannic Noller,Thomas Vogel,Timo Kehrer,Lars Grunske
出处
期刊:Information & Software Technology [Elsevier]
卷期号:144: 106809-106809 被引量:59
标识
DOI:10.1016/j.infsof.2021.106809
摘要

Identifying potential vulnerable code is important to improve the security of our software systems. However, the manual detection of software vulnerabilities requires expert knowledge and is time-consuming, and must be supported by automated techniques. Such automated vulnerability detection techniques should achieve a high accuracy, point developers directly to the vulnerable code fragments, scale to real-world software, generalize across the boundaries of a specific software project, and require no or only moderate setup or configuration effort. In this article, we present Vudenc (Vulnerability Detection with Deep Learning on a Natural Codebase), a deep learning-based vulnerability detection tool that automatically learns features of vulnerable code from a large and real-world Python codebase. Vudenc applies a word2vec model to identify semantically similar code tokens and to provide a vector representation. A network of long-short-term memory cells (LSTM) is then used to classify vulnerable code token sequences at a fine-grained level, highlight the specific areas in the source code that are likely to contain vulnerabilities, and provide confidence levels for its predictions. To evaluate Vudenc, we used 1,009 vulnerability-fixing commits from different GitHub repositories that contain seven different types of vulnerabilities (SQL injection, XSS, Command injection, XSRF, Remote code execution, Path disclosure, Open redirect) for training. In the experimental evaluation, Vudenc achieves a recall of 78%–87%, a precision of 82%–96%, and an F1 score of 80%–90%. Vudenc’s code, the datasets for the vulnerabilities, and the Python corpus for the word2vec model are available for reproduction. Our experimental results suggest that Vudenc is capable of outperforming most of its competitors in terms of vulnerably detection capabilities on real-world software. Comparable accuracy was only achieved on synthetic benchmarks, within single projects, or on a much coarser level of granularity such as entire source code files.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
10秒前
bwx完成签到,获得积分10
10秒前
斯文败类应助桔梗采纳,获得10
12秒前
anan完成签到,获得积分10
13秒前
欢呼的向秋完成签到,获得积分10
15秒前
852应助背后广山采纳,获得10
15秒前
15秒前
余琳完成签到,获得积分10
17秒前
大饼哥完成签到,获得积分10
17秒前
19秒前
汉德萌多林完成签到,获得积分10
20秒前
20秒前
sochiyuen发布了新的文献求助10
21秒前
25秒前
25秒前
从南到北完成签到,获得积分10
26秒前
28秒前
伊小美完成签到,获得积分10
28秒前
汪爷爷完成签到,获得积分10
28秒前
老迟到的捕完成签到,获得积分10
31秒前
ffchen111发布了新的文献求助10
32秒前
35秒前
36秒前
39秒前
ynchendt完成签到,获得积分10
39秒前
40秒前
润华完成签到 ,获得积分10
40秒前
warren发布了新的文献求助10
41秒前
Stefano发布了新的文献求助10
41秒前
酱紫完成签到,获得积分10
41秒前
42秒前
田様应助机智的誉采纳,获得10
44秒前
不能吃太饱完成签到 ,获得积分10
44秒前
45秒前
47秒前
小任完成签到,获得积分20
47秒前
48秒前
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135044
求助须知:如何正确求助?哪些是违规求助? 2786005
关于积分的说明 7774726
捐赠科研通 2441825
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825