Interpretable tree-based ensemble model for predicting beach water quality

浊度 水质 决策树 随机森林 环境科学 预测建模 树(集合论) 机器学习 集合预报 集成学习 稳健性(进化) 水文学(农业) 计算机科学 生态学 数学 地质学 生物 基因 数学分析 岩土工程 生物化学
作者
Lingbo Li,Jundong Qiao,Yu Guan,Leizhi Wang,Hong‐Yi Li,Chen Liao,Zhenduo Zhu
出处
期刊:Water Research [Elsevier]
卷期号:211: 118078-118078 被引量:184
标识
DOI:10.1016/j.watres.2022.118078
摘要

Tree-based machine learning models based on environmental features offer low-cost and timely solutions for predicting microbial fecal contamination in beach water to inform the public of the health risk. However, many of these models are black boxes that are difficult for humans to understand, which may cause severe consequences such as unexplained decisions and failure in accountability. To develop interpretable predictive models for beach water quality, we evaluate five tree-based models, namely classification tree, random forest, CatBoost, XGBoost, and LightGBM, and employ a state-of-the-art explanation method SHAP to explain the models. When tested on the Escherichia coli (E. coli) concentration data collected from three beach sites along Lake Erie shores, LightGBM, followed by XGBoost, achieves the highest averaged precision and recall scores. For all three sites, both models suggest lake turbidity as the most important predictor, and elucidate the crucial role of accurate local data of wave height and rainfall in the model development. Local SHAP values further reveal the robustness of the importance of lake turbidity as its SHAP value increases nearly monotonically with its value and is minimally affected by other environmental factors. Moreover, we found an intriguing interaction between lake turbidity and day-of-year. This work suggests that the combination of LightGBM and SHAP has a promising potential to develop interpretable models for predicting microbial water quality in freshwater lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
在水一方应助123采纳,获得10
刚刚
平安喜乐发布了新的文献求助10
刚刚
我是老大应助HCT采纳,获得10
刚刚
缓慢妙芙完成签到 ,获得积分20
1秒前
sasa发布了新的文献求助10
2秒前
2秒前
高手中的糕手完成签到,获得积分10
3秒前
还可以的发布了新的文献求助20
3秒前
孟严青完成签到,获得积分0
3秒前
多么完美的一天完成签到,获得积分10
3秒前
3秒前
LV完成签到 ,获得积分10
3秒前
落寞电灯胆完成签到,获得积分10
3秒前
3秒前
hhh发布了新的文献求助10
4秒前
4秒前
野原新之助完成签到,获得积分10
4秒前
大魔王512发布了新的文献求助10
4秒前
4秒前
4秒前
大胆妖孽完成签到,获得积分10
4秒前
阳光的幻灵完成签到,获得积分10
5秒前
fengzi151完成签到,获得积分20
6秒前
6秒前
自然的碧凡完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
红萌馆管家完成签到,获得积分10
8秒前
标致的夏天完成签到,获得积分20
8秒前
lunky发布了新的文献求助10
8秒前
lizhiqian2024发布了新的文献求助10
8秒前
医学事业完成签到,获得积分10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得20
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得20
9秒前
yy完成签到,获得积分20
9秒前
所所应助科研通管家采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279