Interpretable tree-based ensemble model for predicting beach water quality

浊度 水质 决策树 随机森林 环境科学 预测建模 树(集合论) 机器学习 集合预报 集成学习 稳健性(进化) 水文学(农业) 计算机科学 生态学 数学 地质学 生物 基因 数学分析 岩土工程 生物化学
作者
Lingbo Li,Jundong Qiao,Guan Yu,Leizhi Wang,Hong‐Yi Li,Chen Liao,Zhenduo Zhu
出处
期刊:Water Research [Elsevier]
卷期号:211: 118078-118078 被引量:136
标识
DOI:10.1016/j.watres.2022.118078
摘要

Tree-based machine learning models based on environmental features offer low-cost and timely solutions for predicting microbial fecal contamination in beach water to inform the public of the health risk. However, many of these models are black boxes that are difficult for humans to understand, which may cause severe consequences such as unexplained decisions and failure in accountability. To develop interpretable predictive models for beach water quality, we evaluate five tree-based models, namely classification tree, random forest, CatBoost, XGBoost, and LightGBM, and employ a state-of-the-art explanation method SHAP to explain the models. When tested on the Escherichia coli (E. coli) concentration data collected from three beach sites along Lake Erie shores, LightGBM, followed by XGBoost, achieves the highest averaged precision and recall scores. For all three sites, both models suggest lake turbidity as the most important predictor, and elucidate the crucial role of accurate local data of wave height and rainfall in the model development. Local SHAP values further reveal the robustness of the importance of lake turbidity as its SHAP value increases nearly monotonically with its value and is minimally affected by other environmental factors. Moreover, we found an intriguing interaction between lake turbidity and day-of-year. This work suggests that the combination of LightGBM and SHAP has a promising potential to develop interpretable models for predicting microbial water quality in freshwater lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠惠发布了新的文献求助10
刚刚
AFEUWOS01完成签到,获得积分20
1秒前
冷傲的樱桃完成签到,获得积分10
1秒前
fighting发布了新的文献求助10
1秒前
zxw发布了新的文献求助10
2秒前
赵赵赵完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
唐人雄完成签到,获得积分10
3秒前
xctdyl1992完成签到,获得积分20
3秒前
3秒前
丰知然应助周凡淇采纳,获得10
3秒前
丰知然应助周凡淇采纳,获得10
3秒前
科研小白花完成签到,获得积分20
4秒前
纯真忆安完成签到,获得积分20
4秒前
4秒前
长孙归尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
sweetbearm应助通~采纳,获得10
5秒前
5秒前
青木蓝发布了新的文献求助10
6秒前
6秒前
6秒前
李健的粉丝团团长应助yzz采纳,获得10
6秒前
6秒前
6秒前
6秒前
呆萌士晋发布了新的文献求助10
6秒前
luxxxiu发布了新的文献求助10
6秒前
可爱的函函应助正直亦旋采纳,获得10
7秒前
铜豌豆完成签到 ,获得积分10
7秒前
爆米花应助鳗鱼灵寒采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
小庄完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794