Interpretable tree-based ensemble model for predicting beach water quality

浊度 水质 决策树 随机森林 环境科学 预测建模 树(集合论) 机器学习 集合预报 集成学习 稳健性(进化) 水文学(农业) 计算机科学 生态学 数学 地质学 生物 基因 数学分析 岩土工程 生物化学
作者
Lingbo Li,Jundong Qiao,Yu Guan,Leizhi Wang,Hong‐Yi Li,Chen Liao,Zhenduo Zhu
出处
期刊:Water Research [Elsevier]
卷期号:211: 118078-118078 被引量:184
标识
DOI:10.1016/j.watres.2022.118078
摘要

Tree-based machine learning models based on environmental features offer low-cost and timely solutions for predicting microbial fecal contamination in beach water to inform the public of the health risk. However, many of these models are black boxes that are difficult for humans to understand, which may cause severe consequences such as unexplained decisions and failure in accountability. To develop interpretable predictive models for beach water quality, we evaluate five tree-based models, namely classification tree, random forest, CatBoost, XGBoost, and LightGBM, and employ a state-of-the-art explanation method SHAP to explain the models. When tested on the Escherichia coli (E. coli) concentration data collected from three beach sites along Lake Erie shores, LightGBM, followed by XGBoost, achieves the highest averaged precision and recall scores. For all three sites, both models suggest lake turbidity as the most important predictor, and elucidate the crucial role of accurate local data of wave height and rainfall in the model development. Local SHAP values further reveal the robustness of the importance of lake turbidity as its SHAP value increases nearly monotonically with its value and is minimally affected by other environmental factors. Moreover, we found an intriguing interaction between lake turbidity and day-of-year. This work suggests that the combination of LightGBM and SHAP has a promising potential to develop interpretable models for predicting microbial water quality in freshwater lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
暗能量完成签到 ,获得积分10
2秒前
3秒前
背后寒烟发布了新的文献求助10
3秒前
5秒前
lanxinyue发布了新的文献求助10
6秒前
传奇3应助漂亮的黄豆采纳,获得10
6秒前
土豆国王完成签到,获得积分10
7秒前
鹿c3完成签到,获得积分10
8秒前
纯真忆安完成签到,获得积分10
8秒前
8秒前
8秒前
李彪完成签到,获得积分10
10秒前
11秒前
11秒前
www完成签到,获得积分10
11秒前
猫小乐C完成签到,获得积分10
12秒前
张军发布了新的文献求助10
12秒前
taozi完成签到,获得积分10
13秒前
14秒前
14秒前
爱学习的小能完成签到,获得积分20
14秒前
简单山水发布了新的文献求助10
14秒前
14秒前
月夜发布了新的文献求助10
15秒前
个性的荆应助天天向上采纳,获得10
16秒前
大个应助lanxinyue采纳,获得10
16秒前
冷艳的小白菜完成签到,获得积分10
17秒前
18秒前
18秒前
BowieHuang应助纯真忆安采纳,获得10
18秒前
深情安青应助徐徐采纳,获得10
18秒前
XMY发布了新的文献求助30
19秒前
JL发布了新的文献求助10
19秒前
20秒前
20秒前
无极微光应助开朗的lala采纳,获得20
21秒前
21秒前
21秒前
xiasijian发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451