Interpretable tree-based ensemble model for predicting beach water quality

浊度 水质 决策树 随机森林 环境科学 预测建模 树(集合论) 机器学习 集合预报 集成学习 稳健性(进化) 水文学(农业) 计算机科学 生态学 数学 地质学 生物 基因 数学分析 岩土工程 生物化学
作者
Lingbo Li,Jundong Qiao,Yu Guan,Leizhi Wang,Hong‐Yi Li,Chen Liao,Zhenduo Zhu
出处
期刊:Water Research [Elsevier]
卷期号:211: 118078-118078 被引量:184
标识
DOI:10.1016/j.watres.2022.118078
摘要

Tree-based machine learning models based on environmental features offer low-cost and timely solutions for predicting microbial fecal contamination in beach water to inform the public of the health risk. However, many of these models are black boxes that are difficult for humans to understand, which may cause severe consequences such as unexplained decisions and failure in accountability. To develop interpretable predictive models for beach water quality, we evaluate five tree-based models, namely classification tree, random forest, CatBoost, XGBoost, and LightGBM, and employ a state-of-the-art explanation method SHAP to explain the models. When tested on the Escherichia coli (E. coli) concentration data collected from three beach sites along Lake Erie shores, LightGBM, followed by XGBoost, achieves the highest averaged precision and recall scores. For all three sites, both models suggest lake turbidity as the most important predictor, and elucidate the crucial role of accurate local data of wave height and rainfall in the model development. Local SHAP values further reveal the robustness of the importance of lake turbidity as its SHAP value increases nearly monotonically with its value and is minimally affected by other environmental factors. Moreover, we found an intriguing interaction between lake turbidity and day-of-year. This work suggests that the combination of LightGBM and SHAP has a promising potential to develop interpretable models for predicting microbial water quality in freshwater lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gb完成签到 ,获得积分10
1秒前
传奇3应助Stella采纳,获得10
1秒前
华仔应助9391采纳,获得10
1秒前
舒心的雪莲完成签到,获得积分10
1秒前
响什么捏完成签到 ,获得积分10
2秒前
斯文败类应助拟态橙采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
大个应助zoushiyi采纳,获得10
5秒前
稳重老魏完成签到,获得积分10
5秒前
zzb完成签到,获得积分10
5秒前
freedom发布了新的文献求助10
5秒前
5秒前
焦恩俊发布了新的文献求助10
5秒前
6秒前
忧郁的小海豚完成签到,获得积分20
6秒前
打打应助jiangqingquan采纳,获得30
6秒前
Zx_1993应助小盆呐采纳,获得10
6秒前
华仔应助少年去游荡采纳,获得10
6秒前
6秒前
ru发布了新的文献求助10
6秒前
6秒前
小青椒应助烤布蕾采纳,获得50
7秒前
鱼鱼鱼完成签到,获得积分10
7秒前
深情安青应助shiizii采纳,获得10
8秒前
8秒前
Akim应助YLi_746采纳,获得10
8秒前
8秒前
Zx_1993应助Cedar采纳,获得10
8秒前
小小溪发布了新的文献求助10
9秒前
会撒娇的澜完成签到,获得积分20
9秒前
9秒前
wanci应助大知闲闲采纳,获得10
10秒前
10秒前
zzb发布了新的文献求助10
11秒前
lijiaoshou发布了新的文献求助10
11秒前
12秒前
科研通AI6应助大气早晨采纳,获得10
12秒前
kendrick677发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531667
求助须知:如何正确求助?哪些是违规求助? 4620468
关于积分的说明 14573518
捐赠科研通 4560191
什么是DOI,文献DOI怎么找? 2498759
邀请新用户注册赠送积分活动 1478669
关于科研通互助平台的介绍 1450015