亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable tree-based ensemble model for predicting beach water quality

浊度 水质 决策树 随机森林 环境科学 预测建模 树(集合论) 机器学习 集合预报 集成学习 稳健性(进化) 水文学(农业) 计算机科学 生态学 数学 地质学 生物 基因 数学分析 岩土工程 生物化学
作者
Lingbo Li,Jundong Qiao,Yu Guan,Leizhi Wang,Hong‐Yi Li,Chen Liao,Zhenduo Zhu
出处
期刊:Water Research [Elsevier]
卷期号:211: 118078-118078 被引量:184
标识
DOI:10.1016/j.watres.2022.118078
摘要

Tree-based machine learning models based on environmental features offer low-cost and timely solutions for predicting microbial fecal contamination in beach water to inform the public of the health risk. However, many of these models are black boxes that are difficult for humans to understand, which may cause severe consequences such as unexplained decisions and failure in accountability. To develop interpretable predictive models for beach water quality, we evaluate five tree-based models, namely classification tree, random forest, CatBoost, XGBoost, and LightGBM, and employ a state-of-the-art explanation method SHAP to explain the models. When tested on the Escherichia coli (E. coli) concentration data collected from three beach sites along Lake Erie shores, LightGBM, followed by XGBoost, achieves the highest averaged precision and recall scores. For all three sites, both models suggest lake turbidity as the most important predictor, and elucidate the crucial role of accurate local data of wave height and rainfall in the model development. Local SHAP values further reveal the robustness of the importance of lake turbidity as its SHAP value increases nearly monotonically with its value and is minimally affected by other environmental factors. Moreover, we found an intriguing interaction between lake turbidity and day-of-year. This work suggests that the combination of LightGBM and SHAP has a promising potential to develop interpretable models for predicting microbial water quality in freshwater lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
浮游应助Jason采纳,获得10
5秒前
计划完成签到,获得积分10
8秒前
11秒前
13秒前
15秒前
想上985完成签到,获得积分10
15秒前
talent发布了新的文献求助10
19秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
shhoing应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
BowieHuang应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助笑点低的稀采纳,获得10
29秒前
大方元风发布了新的文献求助10
31秒前
33秒前
HCCha完成签到,获得积分10
36秒前
Tingshan发布了新的文献求助10
38秒前
nah完成签到 ,获得积分10
40秒前
喜悦的小土豆完成签到 ,获得积分10
41秒前
璨澄完成签到 ,获得积分0
41秒前
科研大王完成签到,获得积分10
42秒前
45秒前
47秒前
胡江完成签到 ,获得积分10
50秒前
麻薯完成签到,获得积分10
51秒前
科研启动完成签到,获得积分10
51秒前
52秒前
52秒前
zizi完成签到 ,获得积分10
53秒前
7chill完成签到,获得积分10
56秒前
名子劝学完成签到 ,获得积分10
58秒前
云漓完成签到 ,获得积分10
1分钟前
科研通AI6应助talent采纳,获得10
1分钟前
甜兰儿完成签到,获得积分10
1分钟前
酚醛树脂发布了新的文献求助10
1分钟前
1分钟前
皮皮完成签到 ,获得积分20
1分钟前
羽毛发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374