Interpretable tree-based ensemble model for predicting beach water quality

浊度 水质 决策树 随机森林 环境科学 预测建模 树(集合论) 机器学习 集合预报 集成学习 稳健性(进化) 水文学(农业) 计算机科学 生态学 数学 地质学 生物 基因 数学分析 岩土工程 生物化学
作者
Lingbo Li,Jundong Qiao,Yu Guan,Leizhi Wang,Hong‐Yi Li,Chen Liao,Zhenduo Zhu
出处
期刊:Water Research [Elsevier BV]
卷期号:211: 118078-118078 被引量:157
标识
DOI:10.1016/j.watres.2022.118078
摘要

Tree-based machine learning models based on environmental features offer low-cost and timely solutions for predicting microbial fecal contamination in beach water to inform the public of the health risk. However, many of these models are black boxes that are difficult for humans to understand, which may cause severe consequences such as unexplained decisions and failure in accountability. To develop interpretable predictive models for beach water quality, we evaluate five tree-based models, namely classification tree, random forest, CatBoost, XGBoost, and LightGBM, and employ a state-of-the-art explanation method SHAP to explain the models. When tested on the Escherichia coli (E. coli) concentration data collected from three beach sites along Lake Erie shores, LightGBM, followed by XGBoost, achieves the highest averaged precision and recall scores. For all three sites, both models suggest lake turbidity as the most important predictor, and elucidate the crucial role of accurate local data of wave height and rainfall in the model development. Local SHAP values further reveal the robustness of the importance of lake turbidity as its SHAP value increases nearly monotonically with its value and is minimally affected by other environmental factors. Moreover, we found an intriguing interaction between lake turbidity and day-of-year. This work suggests that the combination of LightGBM and SHAP has a promising potential to develop interpretable models for predicting microbial water quality in freshwater lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fgjkl完成签到 ,获得积分10
刚刚
Lucas应助MingY采纳,获得10
刚刚
王桂元完成签到,获得积分10
刚刚
KanmenRider完成签到,获得积分10
刚刚
勤奋向真发布了新的文献求助10
刚刚
1秒前
蓝兰发布了新的文献求助10
1秒前
1秒前
2秒前
Rimbaud完成签到 ,获得积分10
2秒前
11111发布了新的文献求助10
2秒前
Saw完成签到,获得积分10
2秒前
xu发布了新的文献求助10
3秒前
玻尿酸完成签到,获得积分10
3秒前
ccccccp完成签到,获得积分10
3秒前
所所应助华道之采纳,获得10
4秒前
花开富贵发布了新的文献求助10
4秒前
4秒前
5秒前
liu完成签到,获得积分10
5秒前
伶俐皮卡丘完成签到,获得积分10
6秒前
YOGA1115完成签到,获得积分20
6秒前
CodeCraft应助Liangyu采纳,获得10
6秒前
动如脱兔完成签到,获得积分10
7秒前
Luke发布了新的文献求助10
7秒前
8秒前
8秒前
科研小哥发布了新的文献求助10
8秒前
完美世界应助nmamtf采纳,获得10
9秒前
李依伊发布了新的文献求助10
9秒前
NexusExplorer应助蓝兰采纳,获得10
9秒前
yfy_fairy完成签到,获得积分10
10秒前
11秒前
波波啵啵应助不安青牛采纳,获得50
11秒前
YOGA1115发布了新的文献求助10
11秒前
11秒前
叫哥神手完成签到,获得积分10
12秒前
2889580752发布了新的文献求助10
12秒前
小美发布了新的文献求助10
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594