Interpretable tree-based ensemble model for predicting beach water quality

浊度 水质 决策树 随机森林 环境科学 预测建模 树(集合论) 机器学习 集合预报 集成学习 稳健性(进化) 水文学(农业) 计算机科学 生态学 数学 地质学 生物 基因 数学分析 岩土工程 生物化学
作者
Lingbo Li,Jundong Qiao,Yu Guan,Leizhi Wang,Hong‐Yi Li,Chen Liao,Zhenduo Zhu
出处
期刊:Water Research [Elsevier]
卷期号:211: 118078-118078 被引量:184
标识
DOI:10.1016/j.watres.2022.118078
摘要

Tree-based machine learning models based on environmental features offer low-cost and timely solutions for predicting microbial fecal contamination in beach water to inform the public of the health risk. However, many of these models are black boxes that are difficult for humans to understand, which may cause severe consequences such as unexplained decisions and failure in accountability. To develop interpretable predictive models for beach water quality, we evaluate five tree-based models, namely classification tree, random forest, CatBoost, XGBoost, and LightGBM, and employ a state-of-the-art explanation method SHAP to explain the models. When tested on the Escherichia coli (E. coli) concentration data collected from three beach sites along Lake Erie shores, LightGBM, followed by XGBoost, achieves the highest averaged precision and recall scores. For all three sites, both models suggest lake turbidity as the most important predictor, and elucidate the crucial role of accurate local data of wave height and rainfall in the model development. Local SHAP values further reveal the robustness of the importance of lake turbidity as its SHAP value increases nearly monotonically with its value and is minimally affected by other environmental factors. Moreover, we found an intriguing interaction between lake turbidity and day-of-year. This work suggests that the combination of LightGBM and SHAP has a promising potential to develop interpretable models for predicting microbial water quality in freshwater lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早期早睡完成签到,获得积分10
刚刚
刚刚
嘿嘿发布了新的文献求助10
刚刚
121314wld完成签到,获得积分10
刚刚
刚刚
刚刚
完美世界应助单纯砖头采纳,获得10
刚刚
1秒前
7777135发布了新的文献求助10
1秒前
雪泪发布了新的文献求助10
1秒前
微笑阿狸完成签到,获得积分10
1秒前
1秒前
HIT_C发布了新的文献求助10
1秒前
1秒前
KKK完成签到,获得积分10
2秒前
2秒前
怂怂完成签到,获得积分10
2秒前
2秒前
2秒前
田様应助倩倩努力搞钱采纳,获得30
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
田様应助SIC采纳,获得10
4秒前
4秒前
无花果应助fcyyc采纳,获得10
4秒前
丘比特应助Camellia采纳,获得10
4秒前
zhonglv7应助Zhong采纳,获得10
5秒前
打打应助小巧初露采纳,获得10
5秒前
5秒前
自由的新波完成签到,获得积分10
5秒前
liss完成签到 ,获得积分10
5秒前
5秒前
小毛豆发布了新的文献求助50
5秒前
包容若风完成签到,获得积分10
5秒前
炙热笑旋发布了新的文献求助10
6秒前
LL完成签到,获得积分10
6秒前
情怀应助兰闹儿采纳,获得10
6秒前
nihao发布了新的文献求助10
6秒前
6秒前
求助人员发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731