Multi-channel convolutional neural network architectures for thyroid cancer detection

卷积神经网络 计算机科学 人工智能 甲状腺癌 计算生物学 癌症 生物 医学 内科学
作者
Xinyu Zhang,Vincent C. S. Lee,Jia Rong,Feng Liu,Haoyu Kong
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (1): e0262128-e0262128 被引量:29
标识
DOI:10.1371/journal.pone.0262128
摘要

Early detection of malignant thyroid nodules leading to patient-specific treatments can reduce morbidity and mortality rates. Currently, thyroid specialists use medical images to diagnose then follow the treatment protocols, which have limitations due to unreliable human false-positive diagnostic rates. With the emergence of deep learning, advances in computer-aided diagnosis techniques have yielded promising earlier detection and prediction accuracy; however, clinicians' adoption is far lacking. The present study adopts Xception neural network as the base structure and designs a practical framework, which comprises three adaptable multi-channel architectures that were positively evaluated using real-world data sets. The proposed architectures outperform existing statistical and machine learning techniques and reached a diagnostic accuracy rate of 0.989 with ultrasound images and 0.975 with computed tomography scans through the single input dual-channel architecture. Moreover, the patient-specific design was implemented for thyroid cancer detection and has obtained an accuracy of 0.95 for double inputs dual-channel architecture and 0.94 for four-channel architecture. Our evaluation suggests that ultrasound images and computed tomography (CT) scans yield comparable diagnostic results through computer-aided diagnosis applications. With ultrasound images obtained slightly higher results, CT, on the other hand, can achieve the patient-specific diagnostic design. Besides, with the proposed framework, clinicians can select the best fitting architecture when making decisions regarding a thyroid cancer diagnosis. The proposed framework also incorporates interpretable results as evidence, which potentially improves clinicians' trust and hence their adoption of the computer-aided diagnosis techniques proposed with increased efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助哈哈哈采纳,获得10
刚刚
刚刚
刚刚
无与伦比完成签到,获得积分10
1秒前
重要千青完成签到,获得积分10
1秒前
123456完成签到,获得积分10
1秒前
斯文败类应助吕佩昌采纳,获得10
2秒前
77发布了新的文献求助10
4秒前
iKUN老司机完成签到,获得积分10
5秒前
MJJ发布了新的文献求助10
5秒前
5秒前
怡然的友容完成签到,获得积分10
5秒前
狂野忆文发布了新的文献求助10
6秒前
sufeisunny完成签到 ,获得积分10
6秒前
6秒前
8秒前
搜集达人应助月牙泉采纳,获得10
8秒前
iKUN老司机发布了新的文献求助10
9秒前
今后应助酷炫大白采纳,获得10
9秒前
9秒前
ethanza发布了新的文献求助10
9秒前
11秒前
上官若男应助学术渣渣采纳,获得10
12秒前
MJJ完成签到,获得积分10
12秒前
hanna应助哪壶不开提哪壶采纳,获得10
13秒前
14秒前
xxx发布了新的文献求助10
16秒前
Abby发布了新的文献求助30
21秒前
21秒前
123发布了新的文献求助10
22秒前
单身的溪流完成签到 ,获得积分10
22秒前
fengcosky完成签到,获得积分10
23秒前
预言烨完成签到,获得积分10
23秒前
23秒前
领导范儿应助狂野忆文采纳,获得10
24秒前
迦鳞完成签到 ,获得积分10
25秒前
26秒前
zz发布了新的文献求助10
26秒前
27秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433875
求助须知:如何正确求助?哪些是违规求助? 3031024
关于积分的说明 8940659
捐赠科研通 2719043
什么是DOI,文献DOI怎么找? 1491619
科研通“疑难数据库(出版商)”最低求助积分说明 689336
邀请新用户注册赠送积分活动 685486