Influence maximization problem by leveraging the local traveling and node labeling method for discovering most influential nodes in social networks

最大化 节点(物理) 计算机科学 排名(信息检索) 病毒式营销 集合(抽象数据类型) 架空(工程) 职位(财务) 光学(聚焦) 数据挖掘 数学优化 算法 人工智能 数学 工程类 社会化媒体 万维网 经济 物理 光学 操作系统 结构工程 程序设计语言 财务
作者
Asgarali Bouyer,Hamid Ahmadi Beni
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:592: 126841-126841 被引量:17
标识
DOI:10.1016/j.physa.2021.126841
摘要

The influence maximization problem has gained particular importance in viral marketing for large-scale spreading in social networks. Developing a fast and appropriate algorithm to identify an optimized seed set for the diffusion process on social networks is crucial due to the fast growth of networks. Most fast methods only focus on the degree of nodes while ignoring the strategic position of nodes in the networks. These methods do not have the required quality in finding a seed set in most networks. On the other hand, many other methods have acceptable quality, but their computational overhead is significant. To address these issues, the main concentration of this paper is to propose a fast and accurate method for the influence maximization problem, which uses a local traveling for labeling of nodes based on the influence power, called the LMP algorithm. In the proposed LMP algorithm, first, a travel starts from a node with the lowest influence power to assign a ranking-label for this node and its neighbor nodes in each step based on their diffusion capability and strategic position. The LMP algorithm uses node labeling steps to reduce search space significantly. Three ranking-labels are used in the proposed algorithm, and nodes with the highest ranking-label are selected as candidate nodes. This local and fast step strictly reduces the search space. Finally, the LMP algorithm selects seed nodes based on the topology features and the strategic position of the candidate and connector. The performance of the proposed algorithm is benchmarked with the well-known and recently proposed seed selection algorithms. The experimental results are performed on real-world and synthetic networks to validate the efficiency and effectiveness. The experiments exhibit that the proposed algorithm is the fastest in comparison with other state-of-the-art algorithms, and it has linear time complexity. In addition, it can achieve a good tradeoff between the efficiency and time complexity in the influence maximization problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助SB采纳,获得10
刚刚
1秒前
...发布了新的文献求助10
2秒前
2秒前
man发布了新的文献求助10
2秒前
左然然完成签到,获得积分10
2秒前
丘比特应助Nemo1234采纳,获得10
3秒前
咕咕果完成签到,获得积分10
3秒前
华仔应助外向语山采纳,获得10
3秒前
3秒前
GCXH完成签到,获得积分20
4秒前
HY完成签到,获得积分10
4秒前
烟花应助LZH采纳,获得10
5秒前
6秒前
6秒前
寻道图强举报cc求助涉嫌违规
6秒前
7秒前
7秒前
熊猫家族完成签到,获得积分10
8秒前
抠鼻公主发布了新的文献求助10
8秒前
8秒前
tiantian发布了新的文献求助10
8秒前
橘涂完成签到 ,获得积分10
8秒前
MeSs发布了新的文献求助10
8秒前
9秒前
乐乐应助gu采纳,获得10
9秒前
10秒前
10秒前
相见欢完成签到,获得积分20
10秒前
Wsixg完成签到 ,获得积分10
10秒前
Wenpandaen发布了新的文献求助10
10秒前
蒋瑞轩完成签到,获得积分10
11秒前
11秒前
斯文依白发布了新的文献求助10
12秒前
SB发布了新的文献求助10
12秒前
12秒前
zj发布了新的文献求助10
13秒前
zlfan2197发布了新的文献求助10
13秒前
13秒前
夜谈十记完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663