Influence maximization problem by leveraging the local traveling and node labeling method for discovering most influential nodes in social networks

最大化 节点(物理) 计算机科学 排名(信息检索) 病毒式营销 集合(抽象数据类型) 架空(工程) 职位(财务) 光学(聚焦) 数据挖掘 数学优化 算法 人工智能 数学 工程类 社会化媒体 物理 结构工程 财务 光学 万维网 经济 程序设计语言 操作系统
作者
Asgarali Bouyer,Hamid Ahmadi Beni
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:592: 126841-126841 被引量:17
标识
DOI:10.1016/j.physa.2021.126841
摘要

The influence maximization problem has gained particular importance in viral marketing for large-scale spreading in social networks. Developing a fast and appropriate algorithm to identify an optimized seed set for the diffusion process on social networks is crucial due to the fast growth of networks. Most fast methods only focus on the degree of nodes while ignoring the strategic position of nodes in the networks. These methods do not have the required quality in finding a seed set in most networks. On the other hand, many other methods have acceptable quality, but their computational overhead is significant. To address these issues, the main concentration of this paper is to propose a fast and accurate method for the influence maximization problem, which uses a local traveling for labeling of nodes based on the influence power, called the LMP algorithm. In the proposed LMP algorithm, first, a travel starts from a node with the lowest influence power to assign a ranking-label for this node and its neighbor nodes in each step based on their diffusion capability and strategic position. The LMP algorithm uses node labeling steps to reduce search space significantly. Three ranking-labels are used in the proposed algorithm, and nodes with the highest ranking-label are selected as candidate nodes. This local and fast step strictly reduces the search space. Finally, the LMP algorithm selects seed nodes based on the topology features and the strategic position of the candidate and connector. The performance of the proposed algorithm is benchmarked with the well-known and recently proposed seed selection algorithms. The experimental results are performed on real-world and synthetic networks to validate the efficiency and effectiveness. The experiments exhibit that the proposed algorithm is the fastest in comparison with other state-of-the-art algorithms, and it has linear time complexity. In addition, it can achieve a good tradeoff between the efficiency and time complexity in the influence maximization problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
lzx完成签到,获得积分20
3秒前
勤劳的沛山完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
gavin1110发布了新的文献求助10
7秒前
Akim应助lzx采纳,获得10
8秒前
研友_rLmNXn发布了新的文献求助10
8秒前
陈曦发布了新的文献求助10
9秒前
9秒前
研友_ZG4Bl8完成签到,获得积分10
9秒前
小姚姚完成签到,获得积分10
10秒前
Rondab应助称心的菲鹰采纳,获得10
10秒前
诚心谷南发布了新的文献求助10
10秒前
CodeCraft应助李十七采纳,获得10
11秒前
JamesPei应助研友_rLmNXn采纳,获得10
11秒前
shimly0101xx发布了新的文献求助10
13秒前
JWKim完成签到,获得积分10
18秒前
19秒前
22秒前
像只猫发布了新的文献求助10
25秒前
shimly0101xx发布了新的文献求助10
26秒前
希兮九条叶完成签到,获得积分10
27秒前
28秒前
31秒前
小马甲应助乌禅采纳,获得10
33秒前
33秒前
aldehyde应助科研通管家采纳,获得10
34秒前
py应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
wanci应助科研通管家采纳,获得10
34秒前
aldehyde应助科研通管家采纳,获得10
34秒前
34秒前
研友_VZG7GZ应助科研通管家采纳,获得10
34秒前
赘婿应助科研通管家采纳,获得10
35秒前
脑洞疼应助科研通管家采纳,获得10
35秒前
柯一一应助科研通管家采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176