已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Influence maximization problem by leveraging the local traveling and node labeling method for discovering most influential nodes in social networks

最大化 节点(物理) 计算机科学 排名(信息检索) 病毒式营销 集合(抽象数据类型) 架空(工程) 职位(财务) 光学(聚焦) 数据挖掘 数学优化 算法 人工智能 数学 工程类 社会化媒体 物理 结构工程 财务 光学 万维网 经济 程序设计语言 操作系统
作者
Asgarali Bouyer,Hamid Ahmadi Beni
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:592: 126841-126841 被引量:17
标识
DOI:10.1016/j.physa.2021.126841
摘要

The influence maximization problem has gained particular importance in viral marketing for large-scale spreading in social networks. Developing a fast and appropriate algorithm to identify an optimized seed set for the diffusion process on social networks is crucial due to the fast growth of networks. Most fast methods only focus on the degree of nodes while ignoring the strategic position of nodes in the networks. These methods do not have the required quality in finding a seed set in most networks. On the other hand, many other methods have acceptable quality, but their computational overhead is significant. To address these issues, the main concentration of this paper is to propose a fast and accurate method for the influence maximization problem, which uses a local traveling for labeling of nodes based on the influence power, called the LMP algorithm. In the proposed LMP algorithm, first, a travel starts from a node with the lowest influence power to assign a ranking-label for this node and its neighbor nodes in each step based on their diffusion capability and strategic position. The LMP algorithm uses node labeling steps to reduce search space significantly. Three ranking-labels are used in the proposed algorithm, and nodes with the highest ranking-label are selected as candidate nodes. This local and fast step strictly reduces the search space. Finally, the LMP algorithm selects seed nodes based on the topology features and the strategic position of the candidate and connector. The performance of the proposed algorithm is benchmarked with the well-known and recently proposed seed selection algorithms. The experimental results are performed on real-world and synthetic networks to validate the efficiency and effectiveness. The experiments exhibit that the proposed algorithm is the fastest in comparison with other state-of-the-art algorithms, and it has linear time complexity. In addition, it can achieve a good tradeoff between the efficiency and time complexity in the influence maximization problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
曾予嘉完成签到 ,获得积分10
3秒前
今后应助激动的鹰采纳,获得10
4秒前
cbt512133发布了新的文献求助30
4秒前
月蚀六花发布了新的文献求助10
4秒前
欣喜巧曼发布了新的文献求助10
5秒前
朴实的冰菱完成签到,获得积分10
5秒前
动听的雨完成签到,获得积分10
6秒前
李文文发布了新的文献求助10
7秒前
今后应助lining采纳,获得10
8秒前
迷你的夜天完成签到 ,获得积分10
8秒前
bkagyin应助嗯哼采纳,获得10
9秒前
跳跃的迎荷完成签到 ,获得积分10
9秒前
9秒前
xzm完成签到,获得积分10
10秒前
起风了完成签到 ,获得积分10
11秒前
热情爆米花完成签到 ,获得积分10
12秒前
贾欣发布了新的文献求助10
13秒前
lulujiang完成签到 ,获得积分10
14秒前
科研通AI5应助Luminous采纳,获得10
14秒前
hhhhh完成签到 ,获得积分10
15秒前
15秒前
Dannnn完成签到 ,获得积分10
15秒前
Ember完成签到 ,获得积分10
16秒前
17秒前
xmsyq完成签到 ,获得积分10
17秒前
顺其自然完成签到 ,获得积分10
18秒前
嗯哼完成签到,获得积分10
19秒前
00完成签到 ,获得积分10
20秒前
求文献发布了新的文献求助10
21秒前
科研打工人完成签到,获得积分10
22秒前
水若琳完成签到,获得积分10
23秒前
月蚀六花发布了新的文献求助10
23秒前
iNk应助科研打工人采纳,获得20
25秒前
George完成签到 ,获得积分10
25秒前
simon完成签到 ,获得积分10
26秒前
神经蛙完成签到 ,获得积分10
26秒前
JasVe完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063155
求助须知:如何正确求助?哪些是违规求助? 4286820
关于积分的说明 13357889
捐赠科研通 4104806
什么是DOI,文献DOI怎么找? 2247672
邀请新用户注册赠送积分活动 1253210
关于科研通互助平台的介绍 1184218