Adaptive-order proximity learning for graph-based clustering

聚类分析 计算机科学 基质(化学分析) 人工智能 图形 理论计算机科学 机器学习 复合材料 材料科学
作者
Danyang Wu,Wei Chang,Jitao Lu,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:126: 108550-108550 被引量:22
标识
DOI:10.1016/j.patcog.2022.108550
摘要

Recently, structured proximity matrix learning, which aims to learn a structured proximity matrix with explicit clustering structures from the first-order proximity matrix, has become the mainstream of graph-based clustering. However, the first-order proximity matrix always lacks several must-links compared to the groundtruth in real-world data, which results in a mismatched problem and affects the clustering performance. To alleviate this problem, this work introduces the high-order proximity to structured proximity matrix learning, and explores a novel framework named Adaptive-Order Proximity Learning (AOPL) to learn a consensus structured proximity matrix from the proximities of multiple orders. To be specific, AOPL selects the appropriate orders first, then assigns weights to these selected orders adaptively. In this way, a consensus structured proximity matrix is learned from the proximity matrices of appropriate orders. Based on AOPL framework, two practical models with different properties are derived, namely AOPL-Root and AOPL-Log. Besides, AOPL and the derived models are regarded as the same optimization problem subjected to some slightly different constraints. An efficient algorithm is proposed to solve them and the corresponding theoretical analyses are provided. Extensive experiments on several real-world datasets demonstrate superb performance of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小媛完成签到,获得积分10
刚刚
尊敬的花卷完成签到 ,获得积分10
刚刚
1秒前
刻苦的宛白完成签到,获得积分10
3秒前
科研圣体发布了新的文献求助10
4秒前
ewyzero发布了新的文献求助30
4秒前
4秒前
6秒前
7秒前
7秒前
司念者你发布了新的文献求助10
9秒前
9秒前
皮崇知发布了新的文献求助10
10秒前
11秒前
美好易烟发布了新的文献求助10
11秒前
浑灵安发布了新的文献求助10
12秒前
13秒前
却依然完成签到 ,获得积分20
16秒前
16秒前
Akim应助HB采纳,获得10
17秒前
叮叮当当发布了新的文献求助10
17秒前
yar应助涵泽采纳,获得10
18秒前
20秒前
科研通AI2S应助孤独箴言采纳,获得30
22秒前
23秒前
Jc发布了新的文献求助10
25秒前
852应助冬不拉的红糖纸采纳,获得10
26秒前
26秒前
27秒前
眼睛大莆完成签到,获得积分10
28秒前
ll应助Yang采纳,获得10
28秒前
童年的秋千完成签到,获得积分10
31秒前
眼睛大莆发布了新的文献求助10
32秒前
walx完成签到,获得积分10
33秒前
beifa完成签到,获得积分20
33秒前
Jamin完成签到,获得积分10
34秒前
srf0602.发布了新的文献求助10
34秒前
积极代芙完成签到,获得积分10
35秒前
上官若男应助天真的香寒采纳,获得10
36秒前
怀石逾沙完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450