Adaptive-order proximity learning for graph-based clustering

聚类分析 计算机科学 基质(化学分析) 人工智能 图形 理论计算机科学 机器学习 复合材料 材料科学
作者
Danyang Wu,Wei Chang,Jitao Lu,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:Pattern Recognition [Elsevier]
卷期号:126: 108550-108550 被引量:22
标识
DOI:10.1016/j.patcog.2022.108550
摘要

Recently, structured proximity matrix learning, which aims to learn a structured proximity matrix with explicit clustering structures from the first-order proximity matrix, has become the mainstream of graph-based clustering. However, the first-order proximity matrix always lacks several must-links compared to the groundtruth in real-world data, which results in a mismatched problem and affects the clustering performance. To alleviate this problem, this work introduces the high-order proximity to structured proximity matrix learning, and explores a novel framework named Adaptive-Order Proximity Learning (AOPL) to learn a consensus structured proximity matrix from the proximities of multiple orders. To be specific, AOPL selects the appropriate orders first, then assigns weights to these selected orders adaptively. In this way, a consensus structured proximity matrix is learned from the proximity matrices of appropriate orders. Based on AOPL framework, two practical models with different properties are derived, namely AOPL-Root and AOPL-Log. Besides, AOPL and the derived models are regarded as the same optimization problem subjected to some slightly different constraints. An efficient algorithm is proposed to solve them and the corresponding theoretical analyses are provided. Extensive experiments on several real-world datasets demonstrate superb performance of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuziyun发布了新的文献求助10
刚刚
luluyang发布了新的文献求助20
3秒前
3秒前
蕲艾比比谁完成签到,获得积分10
3秒前
负责红酒完成签到,获得积分10
4秒前
4秒前
daytoy完成签到,获得积分10
4秒前
5秒前
伞下铭发布了新的文献求助10
5秒前
5秒前
材料小白完成签到,获得积分10
6秒前
jwb711发布了新的文献求助30
6秒前
JayceHe应助小雨采纳,获得10
6秒前
7秒前
zhj发布了新的文献求助10
8秒前
现代的绿真完成签到,获得积分10
8秒前
8秒前
lgao驳回了Orange应助
9秒前
有魅力的含海完成签到,获得积分10
9秒前
9秒前
Li完成签到,获得积分10
9秒前
Jasper应助daytoy采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
负责红酒发布了新的文献求助10
11秒前
Yu发布了新的文献求助10
11秒前
辛勤寻琴完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
小马甲应助热心的易烟采纳,获得10
13秒前
14秒前
14秒前
14秒前
zhj完成签到,获得积分10
15秒前
希望天下0贩的0应助liekkas采纳,获得10
15秒前
Akim应助mengdewen采纳,获得30
15秒前
清浅发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006