Adaptive-order proximity learning for graph-based clustering

聚类分析 计算机科学 基质(化学分析) 人工智能 图形 理论计算机科学 机器学习 复合材料 材料科学
作者
Danyang Wu,Wei Chang,Jitao Lu,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:Pattern Recognition [Elsevier]
卷期号:126: 108550-108550 被引量:22
标识
DOI:10.1016/j.patcog.2022.108550
摘要

Recently, structured proximity matrix learning, which aims to learn a structured proximity matrix with explicit clustering structures from the first-order proximity matrix, has become the mainstream of graph-based clustering. However, the first-order proximity matrix always lacks several must-links compared to the groundtruth in real-world data, which results in a mismatched problem and affects the clustering performance. To alleviate this problem, this work introduces the high-order proximity to structured proximity matrix learning, and explores a novel framework named Adaptive-Order Proximity Learning (AOPL) to learn a consensus structured proximity matrix from the proximities of multiple orders. To be specific, AOPL selects the appropriate orders first, then assigns weights to these selected orders adaptively. In this way, a consensus structured proximity matrix is learned from the proximity matrices of appropriate orders. Based on AOPL framework, two practical models with different properties are derived, namely AOPL-Root and AOPL-Log. Besides, AOPL and the derived models are regarded as the same optimization problem subjected to some slightly different constraints. An efficient algorithm is proposed to solve them and the corresponding theoretical analyses are provided. Extensive experiments on several real-world datasets demonstrate superb performance of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助欢呼尔烟采纳,获得10
刚刚
1秒前
YFW完成签到,获得积分10
1秒前
星辰大海应助asyman采纳,获得10
2秒前
飞快的羊青完成签到,获得积分10
2秒前
3秒前
3秒前
能干的荆完成签到 ,获得积分10
4秒前
5秒前
开朗的可乐关注了科研通微信公众号
5秒前
5秒前
CipherSage应助典雅夜云采纳,获得10
6秒前
6秒前
Dr_Ho发布了新的文献求助10
6秒前
7秒前
sxy完成签到,获得积分10
7秒前
7秒前
阿冲发布了新的文献求助10
7秒前
长的帅完成签到,获得积分10
7秒前
asyman完成签到,获得积分20
8秒前
汉堡包应助川上富江采纳,获得10
8秒前
9秒前
9秒前
9秒前
大国完成签到,获得积分10
9秒前
10秒前
假装有昵称完成签到 ,获得积分10
11秒前
李健应助狂野的幻翠采纳,获得10
11秒前
12秒前
蜗牛发布了新的文献求助10
12秒前
温婉的谷菱完成签到,获得积分10
12秒前
彭于晏应助七七采纳,获得10
12秒前
wsq完成签到,获得积分10
12秒前
May发布了新的文献求助10
12秒前
12秒前
今日不再蛇皇应助淡定语采纳,获得20
13秒前
asyman发布了新的文献求助10
13秒前
14秒前
美美完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653193
求助须知:如何正确求助?哪些是违规求助? 4789427
关于积分的说明 15063229
捐赠科研通 4811788
什么是DOI,文献DOI怎么找? 2574069
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488465