Adaptive-order proximity learning for graph-based clustering

聚类分析 计算机科学 基质(化学分析) 人工智能 图形 理论计算机科学 机器学习 复合材料 材料科学
作者
Danyang Wu,Wei Chang,Jitao Lu,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:Pattern Recognition [Elsevier]
卷期号:126: 108550-108550 被引量:22
标识
DOI:10.1016/j.patcog.2022.108550
摘要

Recently, structured proximity matrix learning, which aims to learn a structured proximity matrix with explicit clustering structures from the first-order proximity matrix, has become the mainstream of graph-based clustering. However, the first-order proximity matrix always lacks several must-links compared to the groundtruth in real-world data, which results in a mismatched problem and affects the clustering performance. To alleviate this problem, this work introduces the high-order proximity to structured proximity matrix learning, and explores a novel framework named Adaptive-Order Proximity Learning (AOPL) to learn a consensus structured proximity matrix from the proximities of multiple orders. To be specific, AOPL selects the appropriate orders first, then assigns weights to these selected orders adaptively. In this way, a consensus structured proximity matrix is learned from the proximity matrices of appropriate orders. Based on AOPL framework, two practical models with different properties are derived, namely AOPL-Root and AOPL-Log. Besides, AOPL and the derived models are regarded as the same optimization problem subjected to some slightly different constraints. An efficient algorithm is proposed to solve them and the corresponding theoretical analyses are provided. Extensive experiments on several real-world datasets demonstrate superb performance of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开心夏旋完成签到,获得积分10
1秒前
嘞是举仔应助专注的草丛采纳,获得20
2秒前
好好好完成签到,获得积分10
2秒前
洁净如音完成签到,获得积分10
2秒前
wheeler1发布了新的文献求助10
2秒前
浮云发布了新的文献求助30
3秒前
3秒前
3秒前
Redamancy完成签到,获得积分10
4秒前
盒子完成签到,获得积分20
4秒前
开心夏旋发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
刘耀威完成签到,获得积分20
8秒前
啦11发布了新的文献求助10
8秒前
8秒前
9秒前
传奇3应助浮云采纳,获得10
9秒前
9秒前
情怀应助玩命的糖豆采纳,获得10
9秒前
9秒前
酷波er应助清新的秋白采纳,获得10
9秒前
元谷雪发布了新的文献求助10
10秒前
whiteside完成签到,获得积分10
10秒前
11秒前
Andd发布了新的文献求助10
11秒前
12秒前
植物园完成签到,获得积分10
13秒前
13秒前
ruirui发布了新的文献求助30
13秒前
无花果应助QP采纳,获得10
13秒前
曾经友琴发布了新的文献求助10
13秒前
复杂访冬发布了新的文献求助10
14秒前
左秋白发布了新的文献求助10
14秒前
whiteside发布了新的文献求助10
14秒前
保藏完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420