Potential applications and performance of machine learning techniques and algorithms in clinical practice: A systematic review

机器学习 算法 人工智能 梅德林 支持向量机 检查表 临床决策支持系统 计算机科学 系统回顾 医学 临床实习 决策树 科克伦图书馆 决策支持系统 荟萃分析 家庭医学 内科学 心理学 政治学 法学 认知心理学
作者
Ezekwesiri Michael Nwanosike,Barbara R. Conway,Hamid A. Merchant,Syed Shahzad Hasan
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:159: 104679-104679 被引量:44
标识
DOI:10.1016/j.ijmedinf.2021.104679
摘要

The advent of clinically adapted machine learning algorithms can solve numerous problems ranging from disease diagnosis and prognosis to therapy recommendations. This systematic review examines the performance of machine learning (ML) algorithms and evaluates the progress made to date towards their implementation in clinical practice.Systematic searching of databases (PubMed, MEDLINE, Scopus, Google Scholar, Cochrane Library and WHO Covid-19 database) to identify original articles published between January 2011 and October 2021. Studies reporting ML techniques in clinical practice involving humans and ML algorithms with a performance metric were considered.Of 873 unique articles identified, 36 studies were eligible for inclusion. The XGBoost (extreme gradient boosting) algorithm showed the highest potential for clinical applications (n = 7 studies); this was followed jointly by random forest algorithm, logistic regression, and the support vector machine, respectively (n = 5 studies). Prediction of outcomes (n = 33), in particular Inflammatory diseases (n = 7) received the most attention followed by cancer and neuropsychiatric disorders (n = 5 for each) and Covid-19 (n = 4). Thirty-three out of the thirty-six included studies passed more than 50% of the selected quality assessment criteria in the TRIPOD checklist. In contrast, none of the studies could achieve an ideal overall bias rating of 'low' based on the PROBAST checklist. In contrast, only three studies showed evidence of the deployment of ML algorithm(s) in clinical practice.ML is potentially a reliable tool for clinical decision support. Although advocated widely in clinical practice, work is still in progress to validate clinically adapted ML algorithms. Improving quality standards, transparency, and interpretability of ML models will further lower the barriers to acceptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
prawn218完成签到,获得积分10
2秒前
2秒前
3秒前
不配.应助王栋采纳,获得10
4秒前
linliqing完成签到,获得积分10
4秒前
白白发布了新的文献求助10
4秒前
cbp560完成签到,获得积分10
6秒前
6秒前
CodeCraft应助早期早睡采纳,获得10
6秒前
穆紫应助Liu采纳,获得10
7秒前
7秒前
英俊的铭应助一头小飞猪采纳,获得10
8秒前
现实的白安完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
乖乖羊完成签到 ,获得积分10
13秒前
科研通AI2S应助zhangjian采纳,获得10
14秒前
ypppp完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
16秒前
ypppp发布了新的文献求助10
17秒前
XY完成签到,获得积分10
17秒前
17秒前
cbp560发布了新的文献求助10
19秒前
早期早睡发布了新的文献求助10
19秒前
20秒前
HangZ完成签到,获得积分10
21秒前
学习中的呜哩哇啦完成签到,获得积分10
23秒前
吴媛媛发布了新的文献求助10
25秒前
研究僧完成签到,获得积分20
27秒前
大七完成签到 ,获得积分10
28秒前
瞿寒完成签到,获得积分10
28秒前
29秒前
小全完成签到,获得积分10
31秒前
32秒前
33秒前
34秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3176679
求助须知:如何正确求助?哪些是违规求助? 2827965
关于积分的说明 7964255
捐赠科研通 2488883
什么是DOI,文献DOI怎么找? 1326711
科研通“疑难数据库(出版商)”最低求助积分说明 635035
版权声明 602837