亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Potential applications and performance of machine learning techniques and algorithms in clinical practice: A systematic review

机器学习 算法 人工智能 梅德林 计算机科学 系统回顾 医学 临床实习 护理部 政治学 法学
作者
Ezekwesiri Michael Nwanosike,Barbara R. Conway,Hamid A. Merchant,Syed Shahzad Hasan
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:159: 104679-104679 被引量:81
标识
DOI:10.1016/j.ijmedinf.2021.104679
摘要

The advent of clinically adapted machine learning algorithms can solve numerous problems ranging from disease diagnosis and prognosis to therapy recommendations. This systematic review examines the performance of machine learning (ML) algorithms and evaluates the progress made to date towards their implementation in clinical practice.Systematic searching of databases (PubMed, MEDLINE, Scopus, Google Scholar, Cochrane Library and WHO Covid-19 database) to identify original articles published between January 2011 and October 2021. Studies reporting ML techniques in clinical practice involving humans and ML algorithms with a performance metric were considered.Of 873 unique articles identified, 36 studies were eligible for inclusion. The XGBoost (extreme gradient boosting) algorithm showed the highest potential for clinical applications (n = 7 studies); this was followed jointly by random forest algorithm, logistic regression, and the support vector machine, respectively (n = 5 studies). Prediction of outcomes (n = 33), in particular Inflammatory diseases (n = 7) received the most attention followed by cancer and neuropsychiatric disorders (n = 5 for each) and Covid-19 (n = 4). Thirty-three out of the thirty-six included studies passed more than 50% of the selected quality assessment criteria in the TRIPOD checklist. In contrast, none of the studies could achieve an ideal overall bias rating of 'low' based on the PROBAST checklist. In contrast, only three studies showed evidence of the deployment of ML algorithm(s) in clinical practice.ML is potentially a reliable tool for clinical decision support. Although advocated widely in clinical practice, work is still in progress to validate clinically adapted ML algorithms. Improving quality standards, transparency, and interpretability of ML models will further lower the barriers to acceptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明明发布了新的文献求助10
3秒前
LeoBigman完成签到 ,获得积分10
4秒前
lihongjie完成签到,获得积分20
6秒前
研友_ZAVjM8完成签到 ,获得积分10
8秒前
科研通AI2S应助lihongjie采纳,获得10
11秒前
科研通AI2S应助lihongjie采纳,获得10
11秒前
科研通AI2S应助lihongjie采纳,获得10
11秒前
科研通AI2S应助lihongjie采纳,获得10
11秒前
桐桐应助lihongjie采纳,获得10
11秒前
boshi发布了新的文献求助20
13秒前
许三问完成签到 ,获得积分0
18秒前
余念安完成签到 ,获得积分10
19秒前
35秒前
36秒前
Jepsen完成签到 ,获得积分10
37秒前
随机昵称发布了新的文献求助30
42秒前
43秒前
44秒前
爆米花应助XD采纳,获得10
47秒前
48秒前
Maru完成签到,获得积分10
50秒前
sfzz发布了新的文献求助10
52秒前
CipherSage应助amin采纳,获得10
53秒前
张晓祁完成签到,获得积分10
56秒前
xiaoyuan完成签到,获得积分10
58秒前
58秒前
59秒前
59秒前
XD发布了新的文献求助10
1分钟前
big ben完成签到 ,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
ZHY发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
zho应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
隐形曼青应助李...采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770354
求助须知:如何正确求助?哪些是违规求助? 3315432
关于积分的说明 10176120
捐赠科研通 3030411
什么是DOI,文献DOI怎么找? 1662898
邀请新用户注册赠送积分活动 795217
科研通“疑难数据库(出版商)”最低求助积分说明 756612