Motion Sickness Prediction in Self-Driving Cars Using the 6DOF-SVC Model

运动病 计算机科学 运动(物理) 人工智能 模拟 医学 放射科
作者
Benedikt Buchheit,E. Schneider,Mohamad Alayan,Florian Dauth,Daniel J. Strauß
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 13582-13591 被引量:10
标识
DOI:10.1109/tits.2021.3125802
摘要

Drivers who assign the driving task to a self-driving car switch to a passive role to work or enjoy leisure time like a traditional passenger. Consequently, the risk of developing motion sickness (MS) symptoms increases significantly. Adapting one's own driving behavior, e.g. by choosing an alternative route or decreasing the velocity, offers future intelligent vehicles a way to independently prevent MS. Accurate predictions help to improve journey's planning of the vehicle and make correct decisions so as to minimize disruption to the traffic flow. In the present study our contribution is as follow: We conduct two studies by focusing on real-world driving under self-driving conditions and induced MS symptoms in passengers. We simulated driving parameters of the conducted studies to extract simulated driving dynamics and contrasted them with recorded driving dynamics. A well-known model of MS, namely the six-degrees-of-freedom subjective vertical conflict model (6DOF-SVC model) was utilized to predict motion sickness incidence (MSI) for both studies. In order to do so, we implemented a customized Human-Vehicle-Model to map the car's dynamics to the head, which is crucial to apply the 6DOF-SVC model. We evaluated different Human-Vehicle-Model conditions and optimized the parameters of the 6DOF-SVC model to increase prediction accuracy in the case of our experiments. Note that our modeling approach enabled capture effects of missing visual anticipation and cognitive distraction that we present in our experiment. It is concluded that the 6DOF-SVC model is applicable in realistic driving scenarios as the ones used in our study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北极星发布了新的文献求助10
刚刚
jiajia993完成签到,获得积分10
1秒前
uniphoton完成签到,获得积分10
1秒前
朱先生完成签到,获得积分10
1秒前
2秒前
2秒前
哈哈哈发布了新的文献求助10
2秒前
英喆完成签到 ,获得积分10
2秒前
桃了桃了完成签到,获得积分10
2秒前
Deeeppp发布了新的文献求助10
2秒前
大个应助皮夏寒采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
WbinWu完成签到,获得积分10
3秒前
4秒前
4秒前
iNk应助Anoxia采纳,获得10
6秒前
夭夭完成签到,获得积分10
7秒前
专注邴完成签到,获得积分20
7秒前
8秒前
水哥完成签到 ,获得积分10
8秒前
God完成签到,获得积分10
8秒前
8秒前
隐形曼青应助dvvvv采纳,获得20
8秒前
pluto应助sss采纳,获得10
8秒前
吱吱发布了新的文献求助10
8秒前
努力的研究生完成签到,获得积分10
9秒前
田様应助北极星采纳,获得10
10秒前
10秒前
柯尔丝完成签到,获得积分10
11秒前
11秒前
12秒前
mrjohn完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
难过的蘑菇完成签到,获得积分10
14秒前
pw完成签到 ,获得积分10
15秒前
xx发布了新的文献求助10
15秒前
自觉平露完成签到,获得积分10
16秒前
别不开星完成签到,获得积分10
16秒前
嘟嘟请让一让完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667043
求助须知:如何正确求助?哪些是违规求助? 3225810
关于积分的说明 9765818
捐赠科研通 2935662
什么是DOI,文献DOI怎么找? 1607850
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735322