NonRegSRNet: A Nonrigid Registration Hyperspectral Super-Resolution Network

多光谱图像 高光谱成像 计算机科学 人工智能 卷积神经网络 图像配准 模式识别(心理学) 计算机视觉 图像分辨率 遥感 图像(数学) 地理
作者
Ke Zheng,Lianru Gao,Danfeng Hong,Bing Zhang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:31
标识
DOI:10.1109/tgrs.2021.3135501
摘要

Due to the limitations of imaging systems, satellite hyperspectral imagery (HSI), which yields rich spectral information in many channels, often suffers from poor spatial resolution. HSI super-resolution (SR) refers to the fusion of high spatial resolution multispectral imagery (MSI) and low spatial resolution HSI to generate HSI that has both a high spatial and high spectral resolution. However, most existing SR methods assume that the two original images used are perfectly registered: in reality, nonrigid deformation areas can exist locally in the two images even if prior registration of the control points has been carried out. To address this problem, we propose a novel unsupervised spectral unmixing and image deformation correction network—NonRegSRNet—with multimodal and multitask learning that can be used for the joint registration of HSI and MSI and to produce SR imagery. More specifically, NonRegSRNet integrates the dense registration and SR tasks into a unified model that includes a triplet convolutional neural network. This allows these two tasks to complement each other so that better registration and SR results can be achieved. Furthermore, because the point spread function (PSF) and spectral response function (SRF) are often unavailable, two special convolutional layers are designed to adaptively learn the parameters of the PSF and SRF, which makes the proposed model more adaptable. Experimental results demonstrate that the proposed method has the ability to produce highly accurate and stable reconstructed images under complex nonrigid deformation conditions. (Code available at https://github.com/saber-zero/NonRegSRNet)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lbx关闭了lbx文献求助
刚刚
菜虚鲲完成签到 ,获得积分20
2秒前
酷波er应助hong采纳,获得10
2秒前
zho发布了新的文献求助10
2秒前
li发布了新的文献求助10
3秒前
慕青应助研友_Lw43on采纳,获得10
3秒前
sunxx完成签到,获得积分10
3秒前
Singularity应助一区李采纳,获得10
4秒前
乔心发布了新的文献求助10
5秒前
5秒前
ronoo给ronoo的求助进行了留言
5秒前
Drlee完成签到,获得积分10
6秒前
黄淮二傻完成签到,获得积分10
7秒前
李爱国应助优美的糖豆采纳,获得50
7秒前
msl完成签到,获得积分10
8秒前
8秒前
Regina完成签到 ,获得积分10
9秒前
9秒前
丘比特应助乔心采纳,获得10
10秒前
田様应助chenchenchen采纳,获得10
11秒前
tutu发布了新的文献求助10
12秒前
香蕉觅云应助文静的千秋采纳,获得10
14秒前
Fung完成签到,获得积分10
14秒前
15秒前
InfoNinja应助风巽雷震之歌采纳,获得50
18秒前
19秒前
22秒前
22秒前
我自随风完成签到,获得积分10
22秒前
无耻之徒eleven完成签到,获得积分10
23秒前
24秒前
刘欢发布了新的文献求助10
25秒前
HIBARRA发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
27秒前
mj发布了新的文献求助10
28秒前
ZZ发布了新的文献求助10
28秒前
decade发布了新的文献求助10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260