亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Bundle Methods for Nonlinear Robust Optimization

数学优化 捆绑 非线性系统 数学 最优化问题 稳健性(进化) 最大化 非线性规划 缩小 稳健优化 规范(哲学) 计算机科学 生物化学 化学 物理 材料科学 量子力学 复合材料 基因 政治学 法学
作者
Martina Kuchlbauer,Frauke Liers,Michael Stingl
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2106-2124 被引量:5
标识
DOI:10.1287/ijoc.2021.1122
摘要

Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the approaches that do exist impose restrictive assumptions on the problem structure. We present an adaptive bundle method for nonlinear and nonconvex robust optimization problems with a suitable notion of inexactness in function values and subgradients. As the worst-case evaluation requires a global solution to the adversarial problem, it is a main challenge in a general nonconvex nonlinear setting. Moreover, computing elements of an ε-perturbation of the Clarke subdifferential in the [Formula: see text]-norm sense is in general prohibitive for this class of problems. In this article, instead of developing an entirely new bundle concept, we demonstrate how existing approaches, such as Noll’s bundle method for nonconvex minimization with inexact information [Noll D (2013) Bundle method for non-convex minimization with inexact subgradients and function values. Computational and Analytical Mathematics, Springer Proceedings Mathematics, vol. 50 (Springer, New York), 555–592.] can be modified to be able to cope with this situation. Extending the nonconvex bundle concept to the case of robust optimization in this way, we prove convergence under two assumptions: first, that the objective function is lower C 1 and, second, that approximately optimal solutions to the adversarial maximization problem are available. The proposed method is, hence, applicable to a rather general setting of nonlinear robust optimization problems. In particular, we do not rely on a specific structure of the adversary’s constraints. The considered class of robust optimization problems covers the case that the worst-case adversary only needs to be evaluated up to a certain precision. One possibility to evaluate the worst case with the desired degree of precision is the use of techniques from mixed-integer linear programming. We investigate the procedure on some analytic examples. As applications, we study the gas transport problem under uncertainties in demand and in physical parameters that affect pressure losses in the pipes. Computational results for examples in large realistic gas network instances demonstrate the applicability as well as the efficiency of the method. Summary of Contribution: Nonlinear robust optimization is a relevant field of research as real-world optimization problems usually suffer from not precisely known parameters, for example, physical parameters that cannot be measured exactly. Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the methods that do exist impose restrictive assumptions on the problem structure. Writing nonlinear robust optimization tasks in minimax form, in principle, bundle methods can be used to solve the resulting nonsmooth problem. However, there are a number of difficulties to overcome. First, the inner adversarial problem needs to be solved to global optimality, which is a major challenge in a general nonconvex nonlinear setting. In order to cope with this, an adaptive solution approach, which allows for inexactness, is required. A second challenge is then that the computation of elements from an ε-neighborhood of the Clarke subdifferential is, in general, prohibitive. We show how an existing bundle concept by D. Noll for nonconvex problems with inexactness in function values and subgradients can be adapted to this situation. The resulting method only requires availability of approximate worst-case evaluations, and in particular, it does not rely on a specific structure of the adversarial constraints. To evaluate the worst case with the desired degree of precision, one possibility is the use of techniques from mixed-integer linear programming. In the course of the paper, we discuss convergence properties of the resulting method and demonstrate its efficiency by means of robust gas transport problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tian发布了新的文献求助10
1秒前
彦子完成签到 ,获得积分10
2秒前
FMHChan完成签到,获得积分10
3秒前
Lorain完成签到,获得积分10
4秒前
124332发布了新的文献求助10
5秒前
6秒前
7秒前
完美世界应助mmmm采纳,获得10
9秒前
Nacy发布了新的文献求助10
13秒前
田様应助zhao采纳,获得10
16秒前
23秒前
明明发布了新的文献求助10
29秒前
JMZ14258完成签到 ,获得积分10
32秒前
TXZ06完成签到,获得积分10
32秒前
Ava应助Bonnienuit采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
NiceSunnyDay完成签到 ,获得积分10
46秒前
诚心爆米花完成签到,获得积分10
46秒前
玖月完成签到 ,获得积分10
54秒前
忐忑的若云完成签到 ,获得积分10
55秒前
DChen完成签到 ,获得积分10
1分钟前
明轩发布了新的文献求助10
1分钟前
天天快乐应助Nacy采纳,获得10
1分钟前
adcc102完成签到 ,获得积分10
1分钟前
爱听歌芝麻完成签到,获得积分10
1分钟前
1分钟前
超级无敌学术苦瓜完成签到,获得积分20
1分钟前
Nacy发布了新的文献求助10
1分钟前
晴qing发布了新的文献求助10
1分钟前
我是老大应助明轩采纳,获得10
1分钟前
1分钟前
1分钟前
Lee6655完成签到,获得积分10
1分钟前
Bonnienuit发布了新的文献求助10
1分钟前
124332发布了新的文献求助10
1分钟前
1分钟前
nenoaowu发布了新的文献求助50
1分钟前
画船听雨眠完成签到 ,获得积分10
1分钟前
木木完成签到,获得积分10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265408
求助须知:如何正确求助?哪些是违规求助? 2905465
关于积分的说明 8333862
捐赠科研通 2575732
什么是DOI,文献DOI怎么找? 1400111
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633525