亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Bundle Methods for Nonlinear Robust Optimization

数学优化 捆绑 非线性系统 数学 最优化问题 稳健性(进化) 最大化 非线性规划 缩小 稳健优化 规范(哲学) 计算机科学 生物化学 化学 物理 材料科学 量子力学 复合材料 基因 政治学 法学
作者
Martina Kuchlbauer,Frauke Liers,Michael Stingl
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2106-2124 被引量:5
标识
DOI:10.1287/ijoc.2021.1122
摘要

Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the approaches that do exist impose restrictive assumptions on the problem structure. We present an adaptive bundle method for nonlinear and nonconvex robust optimization problems with a suitable notion of inexactness in function values and subgradients. As the worst-case evaluation requires a global solution to the adversarial problem, it is a main challenge in a general nonconvex nonlinear setting. Moreover, computing elements of an ε-perturbation of the Clarke subdifferential in the [Formula: see text]-norm sense is in general prohibitive for this class of problems. In this article, instead of developing an entirely new bundle concept, we demonstrate how existing approaches, such as Noll’s bundle method for nonconvex minimization with inexact information [Noll D (2013) Bundle method for non-convex minimization with inexact subgradients and function values. Computational and Analytical Mathematics, Springer Proceedings Mathematics, vol. 50 (Springer, New York), 555–592.] can be modified to be able to cope with this situation. Extending the nonconvex bundle concept to the case of robust optimization in this way, we prove convergence under two assumptions: first, that the objective function is lower C 1 and, second, that approximately optimal solutions to the adversarial maximization problem are available. The proposed method is, hence, applicable to a rather general setting of nonlinear robust optimization problems. In particular, we do not rely on a specific structure of the adversary’s constraints. The considered class of robust optimization problems covers the case that the worst-case adversary only needs to be evaluated up to a certain precision. One possibility to evaluate the worst case with the desired degree of precision is the use of techniques from mixed-integer linear programming. We investigate the procedure on some analytic examples. As applications, we study the gas transport problem under uncertainties in demand and in physical parameters that affect pressure losses in the pipes. Computational results for examples in large realistic gas network instances demonstrate the applicability as well as the efficiency of the method. Summary of Contribution: Nonlinear robust optimization is a relevant field of research as real-world optimization problems usually suffer from not precisely known parameters, for example, physical parameters that cannot be measured exactly. Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the methods that do exist impose restrictive assumptions on the problem structure. Writing nonlinear robust optimization tasks in minimax form, in principle, bundle methods can be used to solve the resulting nonsmooth problem. However, there are a number of difficulties to overcome. First, the inner adversarial problem needs to be solved to global optimality, which is a major challenge in a general nonconvex nonlinear setting. In order to cope with this, an adaptive solution approach, which allows for inexactness, is required. A second challenge is then that the computation of elements from an ε-neighborhood of the Clarke subdifferential is, in general, prohibitive. We show how an existing bundle concept by D. Noll for nonconvex problems with inexactness in function values and subgradients can be adapted to this situation. The resulting method only requires availability of approximate worst-case evaluations, and in particular, it does not rely on a specific structure of the adversarial constraints. To evaluate the worst case with the desired degree of precision, one possibility is the use of techniques from mixed-integer linear programming. In the course of the paper, we discuss convergence properties of the resulting method and demonstrate its efficiency by means of robust gas transport problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助恰知采纳,获得10
1秒前
eritinn完成签到,获得积分10
10秒前
小地蛋完成签到 ,获得积分10
12秒前
甜蜜的翠柏完成签到,获得积分10
16秒前
心灵美鑫完成签到 ,获得积分10
23秒前
朱文韬发布了新的文献求助10
23秒前
机灵的忆梅完成签到 ,获得积分10
24秒前
传奇3应助青山采纳,获得10
24秒前
口外彭于晏完成签到,获得积分10
28秒前
提拉米草完成签到,获得积分10
33秒前
朱文韬完成签到,获得积分10
33秒前
旺仔发布了新的文献求助10
36秒前
ewmmel完成签到 ,获得积分10
39秒前
42秒前
43秒前
43秒前
思源应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
艾艾应助科研通管家采纳,获得10
43秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
jyy应助科研通管家采纳,获得10
43秒前
爆米花应助科研通管家采纳,获得10
43秒前
量子星尘发布了新的文献求助10
45秒前
KID发布了新的文献求助10
46秒前
恰知完成签到,获得积分10
50秒前
平淡道天完成签到,获得积分10
50秒前
紫色翡翠完成签到,获得积分10
51秒前
KID完成签到,获得积分10
55秒前
57秒前
1分钟前
Owen应助插座采纳,获得10
1分钟前
ma发布了新的文献求助10
1分钟前
多情dingding完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助150
2分钟前
古今奇观完成签到 ,获得积分10
2分钟前
郭俊秀完成签到 ,获得积分10
2分钟前
123完成签到,获得积分10
2分钟前
科研互通完成签到,获得积分10
2分钟前
zhuoak完成签到,获得积分10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960024
求助须知:如何正确求助?哪些是违规求助? 3506241
关于积分的说明 11128439
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789585
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056