A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and ASIC

计算机科学 专用集成电路 现场可编程门阵列 计算机体系结构 卷积神经网络 能源消耗 深度学习 嵌入式系统 人工智能 计算机工程 计算机硬件 生态学 生物
作者
Yunxiang Hu,Yuhao Liu,Zhuoyuan Liu
标识
DOI:10.1109/iccrd54409.2022.9730377
摘要

In recent years, artificial intelligence (AI) has been under rapid development, applied in various areas. Among a vast number of neural network (NN) models, the convolutional neural network (CNN) has a mainstream status in application such as image and sound recognition and machine decision. The convolution operation is the most complex and requires acceleration. A practical method is to optimize the architecture of the deep learning processor (DLP). The traditional CPU architecture lacks parallelism and memory bandwidth and is not suitable for CNN operations. Current researches are focused on graphic processing unit (GPU), field programmable gate array (FPGA) and application specific integrated circuit (ASIC). GPU is the maturest and the most widely applied, however it is not flexible and has high cost and energy consumption. Even though FPGA possesses high flexibility and low energy consumption, it is inferior in performance. ASIC, due to targeted design, is advanced in performance and energy consumption. However, it is highly inflexible. This article reviews the research outcomes of the three classic types of processors applied to CNN, and put forward the future research trend. In particular, this paper analyzes and compares the experimental performance of several processors of different types, and then summarizes the respective advantageous application fields. Hence, the novelty of this article is in the summary of practical DLPs, which is expected to provide helps for the AI researchers, and guide the selection of CNN-supporting hardware in industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cr完成签到,获得积分10
2秒前
3秒前
5秒前
贝壳发布了新的文献求助10
5秒前
科研通AI2S应助peace采纳,获得10
6秒前
英俊的铭应助AURORA采纳,获得10
6秒前
找不到文献完成签到,获得积分10
10秒前
Amb1tionG完成签到 ,获得积分10
12秒前
12秒前
领导范儿应助逐梦采纳,获得10
13秒前
王柯发布了新的文献求助10
14秒前
派大星的海洋裤完成签到,获得积分10
15秒前
15秒前
16秒前
快乐咸鱼给快乐咸鱼的求助进行了留言
17秒前
Seeone完成签到 ,获得积分10
18秒前
20秒前
wking完成签到 ,获得积分10
20秒前
体贴的代真完成签到,获得积分10
20秒前
hui发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助Cris采纳,获得10
21秒前
22秒前
22秒前
1908发布了新的文献求助10
24秒前
asipilin发布了新的文献求助10
25秒前
25秒前
shaw完成签到,获得积分10
26秒前
Felix发布了新的文献求助30
26秒前
irvinzp完成签到,获得积分10
27秒前
28秒前
能干太清完成签到,获得积分10
28秒前
tz完成签到,获得积分10
29秒前
betyby完成签到 ,获得积分10
29秒前
情怀应助光光采纳,获得10
29秒前
Lucas应助猫大熊采纳,获得10
32秒前
32秒前
酷酷码发布了新的文献求助10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187