A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and ASIC

计算机科学 专用集成电路 现场可编程门阵列 计算机体系结构 卷积神经网络 能源消耗 深度学习 嵌入式系统 人工智能 计算机工程 计算机硬件 生态学 生物
作者
Yunxiang Hu,Yuhao Liu,Zhuoyuan Liu
标识
DOI:10.1109/iccrd54409.2022.9730377
摘要

In recent years, artificial intelligence (AI) has been under rapid development, applied in various areas. Among a vast number of neural network (NN) models, the convolutional neural network (CNN) has a mainstream status in application such as image and sound recognition and machine decision. The convolution operation is the most complex and requires acceleration. A practical method is to optimize the architecture of the deep learning processor (DLP). The traditional CPU architecture lacks parallelism and memory bandwidth and is not suitable for CNN operations. Current researches are focused on graphic processing unit (GPU), field programmable gate array (FPGA) and application specific integrated circuit (ASIC). GPU is the maturest and the most widely applied, however it is not flexible and has high cost and energy consumption. Even though FPGA possesses high flexibility and low energy consumption, it is inferior in performance. ASIC, due to targeted design, is advanced in performance and energy consumption. However, it is highly inflexible. This article reviews the research outcomes of the three classic types of processors applied to CNN, and put forward the future research trend. In particular, this paper analyzes and compares the experimental performance of several processors of different types, and then summarizes the respective advantageous application fields. Hence, the novelty of this article is in the summary of practical DLPs, which is expected to provide helps for the AI researchers, and guide the selection of CNN-supporting hardware in industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianchimo完成签到 ,获得积分10
刚刚
球球完成签到,获得积分10
刚刚
刚刚
八月中稿完成签到 ,获得积分10
1秒前
高艳慧发布了新的文献求助10
1秒前
1秒前
CipherSage应助大糖糕僧采纳,获得10
1秒前
2秒前
向往完成签到,获得积分10
2秒前
柏林寒冬应助谠长采纳,获得10
3秒前
传奇3应助不踩油门采纳,获得10
3秒前
天真的不评完成签到 ,获得积分10
4秒前
5秒前
5秒前
小方完成签到,获得积分10
5秒前
5秒前
赖道之发布了新的文献求助10
5秒前
Upupuu发布了新的文献求助10
6秒前
同學你該吃藥了完成签到 ,获得积分10
6秒前
delilicate发布了新的文献求助10
7秒前
7秒前
zz发布了新的文献求助10
8秒前
8秒前
8秒前
于彤发布了新的文献求助10
9秒前
9秒前
不踩油门完成签到,获得积分20
9秒前
汉堡包应助王靖博采纳,获得10
10秒前
清新完成签到,获得积分10
10秒前
lty发布了新的文献求助10
10秒前
森ok发布了新的文献求助10
10秒前
阔达的无剑完成签到,获得积分10
11秒前
小蘑菇应助Stella采纳,获得10
11秒前
64658完成签到,获得积分10
11秒前
11秒前
11秒前
zhong完成签到 ,获得积分10
11秒前
Ss完成签到,获得积分20
12秒前
12秒前
tanny发布了新的文献求助10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128