已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and ASIC

计算机科学 专用集成电路 现场可编程门阵列 计算机体系结构 卷积神经网络 能源消耗 深度学习 嵌入式系统 人工智能 计算机工程 计算机硬件 生态学 生物
作者
Yunxiang Hu,Yuhao Liu,Zhuoyuan Liu
标识
DOI:10.1109/iccrd54409.2022.9730377
摘要

In recent years, artificial intelligence (AI) has been under rapid development, applied in various areas. Among a vast number of neural network (NN) models, the convolutional neural network (CNN) has a mainstream status in application such as image and sound recognition and machine decision. The convolution operation is the most complex and requires acceleration. A practical method is to optimize the architecture of the deep learning processor (DLP). The traditional CPU architecture lacks parallelism and memory bandwidth and is not suitable for CNN operations. Current researches are focused on graphic processing unit (GPU), field programmable gate array (FPGA) and application specific integrated circuit (ASIC). GPU is the maturest and the most widely applied, however it is not flexible and has high cost and energy consumption. Even though FPGA possesses high flexibility and low energy consumption, it is inferior in performance. ASIC, due to targeted design, is advanced in performance and energy consumption. However, it is highly inflexible. This article reviews the research outcomes of the three classic types of processors applied to CNN, and put forward the future research trend. In particular, this paper analyzes and compares the experimental performance of several processors of different types, and then summarizes the respective advantageous application fields. Hence, the novelty of this article is in the summary of practical DLPs, which is expected to provide helps for the AI researchers, and guide the selection of CNN-supporting hardware in industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光坠星海完成签到 ,获得积分10
刚刚
刚刚
1秒前
华仔应助zz采纳,获得10
1秒前
dove完成签到 ,获得积分10
1秒前
杳杳完成签到 ,获得积分10
1秒前
枫叶完成签到,获得积分10
2秒前
瘦瘦凌晴发布了新的文献求助10
3秒前
cyf完成签到,获得积分10
5秒前
6秒前
明哲派发布了新的文献求助10
6秒前
7秒前
bkagyin应助ppxx采纳,获得10
7秒前
今天别生气完成签到,获得积分10
7秒前
10秒前
领导范儿应助咖啡不加糖采纳,获得10
11秒前
wondor1111发布了新的文献求助10
11秒前
大模型应助优雅书竹采纳,获得10
11秒前
12秒前
yesmider完成签到,获得积分10
13秒前
眼睛大的缘郡完成签到,获得积分20
13秒前
13秒前
dyd发布了新的文献求助10
15秒前
zgjc发布了新的文献求助10
16秒前
共享精神应助ZZZ采纳,获得10
16秒前
17秒前
17秒前
Lin_Focus发布了新的文献求助10
17秒前
17秒前
王赛雅wang12_完成签到,获得积分20
17秒前
s20001021s完成签到 ,获得积分10
18秒前
ting发布了新的文献求助10
18秒前
小跑阿甘完成签到,获得积分10
18秒前
丘比特应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089714
求助须知:如何正确求助?哪些是违规求助? 4304338
关于积分的说明 13414052
捐赠科研通 4130011
什么是DOI,文献DOI怎么找? 2261956
邀请新用户注册赠送积分活动 1265979
关于科研通互助平台的介绍 1200641