A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and ASIC

计算机科学 专用集成电路 现场可编程门阵列 计算机体系结构 卷积神经网络 能源消耗 深度学习 嵌入式系统 人工智能 计算机工程 计算机硬件 生态学 生物
作者
Yunxiang Hu,Yuhao Liu,Zhuoyuan Liu
标识
DOI:10.1109/iccrd54409.2022.9730377
摘要

In recent years, artificial intelligence (AI) has been under rapid development, applied in various areas. Among a vast number of neural network (NN) models, the convolutional neural network (CNN) has a mainstream status in application such as image and sound recognition and machine decision. The convolution operation is the most complex and requires acceleration. A practical method is to optimize the architecture of the deep learning processor (DLP). The traditional CPU architecture lacks parallelism and memory bandwidth and is not suitable for CNN operations. Current researches are focused on graphic processing unit (GPU), field programmable gate array (FPGA) and application specific integrated circuit (ASIC). GPU is the maturest and the most widely applied, however it is not flexible and has high cost and energy consumption. Even though FPGA possesses high flexibility and low energy consumption, it is inferior in performance. ASIC, due to targeted design, is advanced in performance and energy consumption. However, it is highly inflexible. This article reviews the research outcomes of the three classic types of processors applied to CNN, and put forward the future research trend. In particular, this paper analyzes and compares the experimental performance of several processors of different types, and then summarizes the respective advantageous application fields. Hence, the novelty of this article is in the summary of practical DLPs, which is expected to provide helps for the AI researchers, and guide the selection of CNN-supporting hardware in industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex完成签到,获得积分10
刚刚
李爱国应助大头娃娃采纳,获得10
1秒前
1秒前
灵寒完成签到 ,获得积分10
1秒前
无情寒珊完成签到,获得积分10
1秒前
从容的丹珍完成签到,获得积分10
1秒前
雷乾完成签到,获得积分10
1秒前
keke完成签到,获得积分10
1秒前
1秒前
Flyzhang完成签到,获得积分10
2秒前
悲凉的小馒头完成签到 ,获得积分10
2秒前
2秒前
大模型应助REBECCA采纳,获得10
2秒前
keyanchong完成签到,获得积分10
3秒前
科研通AI2S应助summer采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
漂亮天真完成签到,获得积分10
4秒前
草莓雪酪应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
七月流火应助科研通管家采纳,获得150
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
老迟到的土豆完成签到 ,获得积分10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
小八统治世界完成签到,获得积分10
4秒前
七月流火应助科研通管家采纳,获得150
4秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
雷乾发布了新的文献求助10
5秒前
5秒前
5秒前
下雨天的树完成签到,获得积分10
5秒前
FR完成签到,获得积分10
6秒前
缓慢天菱完成签到,获得积分10
6秒前
fhhkckk3发布了新的文献求助20
6秒前
liuxinyu完成签到 ,获得积分10
6秒前
6秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465