LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow

地震位置 工作流程 计算机科学 重新安置 一般化 流量(数学) 序列(生物学) 地震学 诱发地震 地质学 实时计算 数据库 数学 数学分析 几何学 生物 程序设计语言 遗传学
作者
Miao Zhang,Min Liu,Tian Feng,Ruijia Wang,Weiqiang Zhu
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:93 (5): 2426-2438 被引量:81
标识
DOI:10.1785/0220220019
摘要

Abstract The ever-increasing networks and quantity of seismic data drive the need for seamless and automatic workflows for rapid and accurate earthquake detection and location. In recent years, machine learning (ML)-based pickers have achieved remarkable accuracy and efficiency with generalization, and thus can significantly improve the earthquake location accuracy of previously developed sequential location methods. However, the inconsistent input or output (I/O) formats between multiple packages often limit their cross application. To reduce format barriers, we incorporated a widely used ML phase picker—PhaseNet—with several popular earthquake location methods and developed a “hands-free” end-to-end ML-based location workflow (named LOC-FLOW), which can be applied directly to continuous waveforms and build high-precision earthquake catalogs at local and regional scales. The renovated open-source package assembles several sequential algorithms including seismic first-arrival picking (PhaseNet and STA/LTA), phase association (REAL), absolute location (VELEST and HYPOINVERSE), and double-difference relative location (hypoDD and GrowClust). We provided different location strategies and I/O interfaces for format conversion to form a seamless earthquake location workflow. Different algorithms can be flexibly selected and/or combined. As an example, we apply LOC-FLOW to the 28 September 2004 Mw 6.0 Parkfield, California, earthquake sequence. LOC-FLOW accomplished seismic phase picking, association, velocity model updating, station correction, absolute location, and double-difference relocation for 16-day continuous seismic data. We detected and located 3.7 times (i.e., 4357) as many as earthquakes with cross-correlation double-difference locations from the Northern California Earthquake Data Center. Our study demonstrates that LOC-FLOW is capable of building high-precision earthquake catalogs efficiently and seamlessly from continuous seismic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助火星上含芙采纳,获得10
刚刚
orixero应助羽木采纳,获得10
刚刚
风国之境给风国之境的求助进行了留言
刚刚
1秒前
1秒前
1秒前
xyj完成签到,获得积分10
1秒前
小奶狗完成签到,获得积分20
1秒前
2秒前
2秒前
milv5完成签到,获得积分10
2秒前
gu123完成签到,获得积分10
2秒前
ZXH完成签到,获得积分10
3秒前
3秒前
Smiling发布了新的文献求助10
3秒前
EvenCai发布了新的文献求助10
3秒前
hh完成签到 ,获得积分10
4秒前
4秒前
xiaoshi完成签到,获得积分10
4秒前
4秒前
专注严青发布了新的文献求助10
4秒前
覃晴完成签到,获得积分10
4秒前
4秒前
WN发布了新的文献求助10
5秒前
5秒前
111完成签到,获得积分10
5秒前
Paris发布了新的文献求助10
6秒前
zhongbo完成签到,获得积分10
6秒前
6秒前
6秒前
落落小兔完成签到 ,获得积分10
6秒前
SciGPT应助雨禾采纳,获得30
6秒前
SYLH应助闪闪的采梦采纳,获得10
6秒前
HMZ完成签到,获得积分10
7秒前
7秒前
一忽儿左完成签到,获得积分20
7秒前
烟花应助祝愿采纳,获得10
7秒前
酷酷妙梦发布了新的文献求助10
7秒前
liliflower应助研友_楼灵煌采纳,获得20
7秒前
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060