催化作用
镍
化学
流出物
废水
化学工程
无机化学
材料科学
废物管理
有机化学
工程类
作者
Zhijie Guan,Yanping Guo,Zhihua Mo,Shaojin Chen,Jialin Liang,Xiaojian Liao,Yumin Zhang,Zhenhua Huang,Weifeng Song,Yanbin Xu,Xuelian Ou,Shuiyu Sun
标识
DOI:10.1016/j.jhazmat.2022.128768
摘要
Heterogeneous catalytic ozonation (HCO) has been widely applied for the treatment of wastewater. In order to maintain the structural stability and surface catalytic activity of heterogeneous catalysts during the HCO treatment of electroless nickel plating effluent (ENPE), a MnFe2O4-C@Al2O3 catalyst with a core-shell structure was synthesized. MnFe2O4-C@Al2O3 was characterized and applied in the removal of total nickel (TNi) and organic contaminants from actual ENPE, using a coupled system of HCO combined with a magnetic dithiocarbamate chelating resin (MnFe2O4-C@Al2O3/O3-MDCR). Results show that embedding Al2O3 with C and MnFe2O4 significantly increased the TNi removal efficiency (99.3%), enhanced the O3-utilization efficiency and improved the generation of reactive oxygen species (ROS). The reaction rate (k = 0.7641 min-1) and O3-utilization efficiency established for TNi removal (ΔTNi/ΔO3 =0.221) by the MnFe2O4-C@Al2O3/O3-MDCR system, were 220% and 140% higher than the Al2O3/O3-MDCR system, respectively. Catalytic mechanism analysis demonstrated that surface hydroxyl groups, oxygen vacancy, metals, the carbon surface and its functional groups, can all potentially serve as catalytic active sites, with 1O2 and •OH considered to the predominant ROS. Overall, these findings verify that the synthesized MnFe2O4-C@Al2O3 catalyst possesses excellent catalytic capabilities and outstanding structural stability, making it suitable for practical application in the treatment of wastewater effluent.
科研通智能强力驱动
Strongly Powered by AbleSci AI