Multi-Source Aggregation Transformer for Concealed Object Detection in Millimeter-Wave Images

计算机科学 人工智能 计算机视觉 目标检测 变压器 扫描仪 模式识别(心理学) 工程类 电压 电气工程
作者
Peng Sun,Ting Liu,Xiaotong Chen,Shiyin Zhang,Yao Zhao,Shikui Wei
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 6148-6159 被引量:17
标识
DOI:10.1109/tcsvt.2022.3161815
摘要

The active millimeter wave scanner has been widely used for detecting objects concealed underneath a person’s clothing in the field of security inspection and anti-terrorism. However, the active millimeter wave (AMMW) images always suffer from low signal-noise ratio, motion blur, and small size objects, making it challenging to detect concealed objects efficiently and accurately. The scanner usually captures a sequence of images in different views around a human body at once, while the existing algorithms only utilize the single image without considering the relationships among images. In this paper, we design a multi-source aggregation transformer (MATR) with two different attention mechanisms to model spatial correlations within an image and contextual interactions across images. Specifically, a self-attention module is introduced to encode local relationships between the region proposals in each image, while a cross-attention mechanism is built to focus on modeling the cross-correlations between different images. Besides, to handle the problem of small objects in size and suppress the noise in AMMW images, we present a selective context module (SCM). It designs a dynamic selection mechanism to enhance the high-resolution feature with spatial details and make it more distinguishable from the noisy background. Experiments on two AMMW image datasets demonstrate that the proposed methods lead to a remarkable improvement compared to previous state-of-the-art and will benefit the concealed object detection in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呱牛完成签到,获得积分10
刚刚
Towne完成签到,获得积分10
1秒前
奇奇云发布了新的文献求助30
1秒前
seeuu驳回了思源应助
4秒前
Chandler完成签到,获得积分10
4秒前
Kvolu29发布了新的文献求助30
4秒前
5秒前
6秒前
6秒前
大个应助yian采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得30
7秒前
华仔应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
墨染书香发布了新的文献求助10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
9秒前
May应助科研通管家采纳,获得20
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
佳佳应助RosyBai采纳,获得10
10秒前
10秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388