Multi-Source Aggregation Transformer for Concealed Object Detection in Millimeter-Wave Images

计算机科学 人工智能 计算机视觉 目标检测 变压器 扫描仪 模式识别(心理学) 工程类 电气工程 电压
作者
Peng Sun,Ting Liu,Xiaotong Chen,Shiyin Zhang,Yao Zhao,Shikui Wei
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 6148-6159 被引量:17
标识
DOI:10.1109/tcsvt.2022.3161815
摘要

The active millimeter wave scanner has been widely used for detecting objects concealed underneath a person’s clothing in the field of security inspection and anti-terrorism. However, the active millimeter wave (AMMW) images always suffer from low signal-noise ratio, motion blur, and small size objects, making it challenging to detect concealed objects efficiently and accurately. The scanner usually captures a sequence of images in different views around a human body at once, while the existing algorithms only utilize the single image without considering the relationships among images. In this paper, we design a multi-source aggregation transformer (MATR) with two different attention mechanisms to model spatial correlations within an image and contextual interactions across images. Specifically, a self-attention module is introduced to encode local relationships between the region proposals in each image, while a cross-attention mechanism is built to focus on modeling the cross-correlations between different images. Besides, to handle the problem of small objects in size and suppress the noise in AMMW images, we present a selective context module (SCM). It designs a dynamic selection mechanism to enhance the high-resolution feature with spatial details and make it more distinguishable from the noisy background. Experiments on two AMMW image datasets demonstrate that the proposed methods lead to a remarkable improvement compared to previous state-of-the-art and will benefit the concealed object detection in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
封迎松完成签到,获得积分10
刚刚
秋迎夏发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
荷欢笙完成签到,获得积分10
1秒前
1秒前
ritanon完成签到,获得积分10
2秒前
2秒前
理性悲歌发布了新的文献求助10
2秒前
2秒前
拉布拉卡发布了新的文献求助10
3秒前
永恒星完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
HH关闭了HH文献求助
4秒前
5秒前
5秒前
5秒前
moumou发布了新的文献求助10
5秒前
荞面小肉包完成签到,获得积分10
5秒前
DaPooo完成签到,获得积分10
5秒前
6秒前
6秒前
阿柴_Htao发布了新的文献求助10
6秒前
隐形曼青应助安世倌采纳,获得10
6秒前
6秒前
吕耀炜完成签到,获得积分10
7秒前
wrx发布了新的文献求助10
7秒前
展七完成签到 ,获得积分10
8秒前
xiaocongx发布了新的文献求助10
8秒前
淡然白安发布了新的文献求助10
8秒前
冷静水蓝发布了新的文献求助10
8秒前
杨剑成发布了新的文献求助30
8秒前
orixero应助拉布拉卡采纳,获得10
9秒前
理性悲歌完成签到,获得积分20
9秒前
斯文败类应助听弦采纳,获得10
10秒前
mhq发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075882
求助须知:如何正确求助?哪些是违规求助? 2728806
关于积分的说明 7506117
捐赠科研通 2377016
什么是DOI,文献DOI怎么找? 1260379
科研通“疑难数据库(出版商)”最低求助积分说明 610960
版权声明 597151