亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Source Aggregation Transformer for Concealed Object Detection in Millimeter-Wave Images

计算机科学 人工智能 计算机视觉 目标检测 变压器 扫描仪 模式识别(心理学) 工程类 电压 电气工程
作者
Peng Sun,Ting Liu,Xiaotong Chen,Shiyin Zhang,Yao Zhao,Shikui Wei
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 6148-6159 被引量:17
标识
DOI:10.1109/tcsvt.2022.3161815
摘要

The active millimeter wave scanner has been widely used for detecting objects concealed underneath a person’s clothing in the field of security inspection and anti-terrorism. However, the active millimeter wave (AMMW) images always suffer from low signal-noise ratio, motion blur, and small size objects, making it challenging to detect concealed objects efficiently and accurately. The scanner usually captures a sequence of images in different views around a human body at once, while the existing algorithms only utilize the single image without considering the relationships among images. In this paper, we design a multi-source aggregation transformer (MATR) with two different attention mechanisms to model spatial correlations within an image and contextual interactions across images. Specifically, a self-attention module is introduced to encode local relationships between the region proposals in each image, while a cross-attention mechanism is built to focus on modeling the cross-correlations between different images. Besides, to handle the problem of small objects in size and suppress the noise in AMMW images, we present a selective context module (SCM). It designs a dynamic selection mechanism to enhance the high-resolution feature with spatial details and make it more distinguishable from the noisy background. Experiments on two AMMW image datasets demonstrate that the proposed methods lead to a remarkable improvement compared to previous state-of-the-art and will benefit the concealed object detection in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leec完成签到,获得积分10
4秒前
12秒前
猴面包树发布了新的文献求助80
14秒前
Hello应助jijiguo采纳,获得10
15秒前
15秒前
15秒前
zyq发布了新的文献求助10
18秒前
21秒前
22秒前
可久斯基完成签到 ,获得积分10
22秒前
jijiguo发布了新的文献求助10
26秒前
26秒前
27秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
酷波er应助Cheny采纳,获得30
37秒前
39秒前
DChen完成签到 ,获得积分10
42秒前
承允完成签到,获得积分10
43秒前
JamesPei应助jijiguo采纳,获得10
52秒前
充电宝应助楷楷不偷后场采纳,获得10
53秒前
2220完成签到 ,获得积分10
59秒前
59秒前
1分钟前
qwwefe发布了新的文献求助10
1分钟前
火火发布了新的文献求助10
1分钟前
1分钟前
上官老师完成签到 ,获得积分10
1分钟前
1分钟前
笑笑完成签到 ,获得积分10
1分钟前
小蘑菇应助火火采纳,获得10
1分钟前
沙彬发布了新的文献求助10
1分钟前
1分钟前
1分钟前
彦黄子孙完成签到,获得积分10
1分钟前
思源应助沙彬采纳,获得10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407659
求助须知:如何正确求助?哪些是违规求助? 4525171
关于积分的说明 14101365
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436551
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604