Determining application volume of unmanned aerial spraying systems for cotton defoliation using remote sensing images

升级 体积热力学 自动化 人工神经网络 遥感 工程类 模拟 计算机科学 人工智能 机械工程 地理 量子力学 操作系统 物理
作者
Pengchao Chen,Weicheng Xu,Yilong Zhan,Guobin Wang,Weiguang Yang,Yubin Lan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106912-106912 被引量:20
标识
DOI:10.1016/j.compag.2022.106912
摘要

The Unmanned aerial spraying systems (UASS), with a precise positioning system and convenient control system, have attracted more attention from researchers and the market. However, the UASS operation parameter setting still depends on the operator, and there is still a gap between the intelligent spraying. The upgrade of UASS from automation to intelligence requires a “scientific brain” to make spraying decisions. In this study, the UASS equipped with centrifugal nozzles was used to simulate defoliant spraying, combined with RGB and multi-spectral cameras to collect remote sensing images of the target area. The droplet distribution data were obtained through two years of field trials in two places. A droplet distribution prediction model based on the spray volume of UASS and the remote sensing spectral index that characterizes the cotton canopy structure is established by the BP neural network and Bayesian regularization training algorithm. The cotton defoliant was verified using this model and combined with NY/T 3213–2018 standard. The research results show that it is feasible to use remote sensing images to determine the application volume of UASSs for cotton defoliant. Compared with the conventional application rate and overspray, the defoliant spray based on the decision model can achieve the expected cotton defoliation effect and reduce the application volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
专一的铃铛完成签到,获得积分10
刚刚
ycw992847127完成签到,获得积分10
1秒前
1秒前
ycy发布了新的文献求助10
1秒前
lu完成签到,获得积分10
2秒前
yangsi完成签到 ,获得积分10
2秒前
pluto应助月蚀六花采纳,获得10
3秒前
白云袅袅完成签到,获得积分10
3秒前
lzh完成签到,获得积分10
3秒前
bobo45发布了新的文献求助10
3秒前
简默发布了新的文献求助10
3秒前
汉堡包应助自由元菱采纳,获得10
3秒前
4秒前
Dreamer完成签到,获得积分10
4秒前
鲸落发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
小二郎应助小yy采纳,获得10
6秒前
7秒前
SciGPT应助Grace采纳,获得10
7秒前
O而K之完成签到,获得积分10
7秒前
lqq完成签到,获得积分10
8秒前
花生仔发布了新的文献求助10
8秒前
田様应助123采纳,获得10
9秒前
9秒前
9秒前
10秒前
啊啊发布了新的文献求助10
10秒前
彘shen完成签到 ,获得积分10
10秒前
10秒前
猫猫虫发布了新的文献求助10
10秒前
黄pp发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
11秒前
WLLLR发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668