Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy

医学 单变量 无线电技术 逻辑回归 接收机工作特性 单变量分析 放化疗 磁共振成像 曼惠特尼U检验 回顾性队列研究 宫颈癌 放射科 威尔科克森符号秩检验 阶段(地层学) 多元分析 放射治疗 内科学 癌症 多元统计 统计 数学 生物 古生物学
作者
Riccardo Autorino,Benedetta Gui,Giulia Panza,Luca Boldrini,D. Cusumano,Leila Russo,Alessia Nardangeli,Salvatore Persiani,Maura Campitelli,G. Ferrandina,G. Macchia,Vincenzo Valentini,Maria Antonietta Gambacorta,Roberto Manfredi
出处
期刊:Radiologia Medica [Springer Science+Business Media]
卷期号:127 (5): 498-506 被引量:28
标识
DOI:10.1007/s11547-022-01482-9
摘要

The aim of this study is to determine if radiomics features extracted from staging magnetic resonance (MR) images could predict 2-year long-term clinical outcome in patients with locally advanced cervical cancer (LACC) after neoadjuvant chemoradiotherapy (NACRT).We retrospectively enrolled patients with LACC diagnosis who underwent NACRT followed by radical surgery in two different institutions. Radiomics features were extracted from pre-treatment 1.5 T T2w MR images. The predictive performance of each feature was quantified in terms of Wilcoxon-Mann-Whitney test. Among the significant features, Pearson correlation coefficient (PCC) was calculated to quantify the correlation among the different predictors. A logistic regression model was calculated considering the two most significant features at the univariate analysis showing the lowest PCC value. The predictive performance of the model created was quantified out using the area under the receiver operating characteristic curve (AUC).A total of 175 patients were retrospectively enrolled (142 for the training cohort and 33 for the validation one). 1896 radiomic feature were extracted, 91 of which showed significance (p < 0.05) at the univariate analysis. The radiomic model showing the highest predictive value combined the features calculated starting from the gray level co-occurrence-based features. This model achieved an AUC of 0.73 in the training set and 0.91 in the validation set.The proposed radiomic model showed promising performances in predicting 2-year overall survival before NACRT. Nevertheless, the observed results should be tested in larger studies with consistent external validation cohorts, to confirm their potential clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵小坤堃发布了新的文献求助10
1秒前
1秒前
顾矜应助洁洁子采纳,获得10
2秒前
2秒前
wanghan发布了新的文献求助10
2秒前
万能图书馆应助nanami采纳,获得10
2秒前
2秒前
2秒前
3秒前
Andy发布了新的文献求助10
3秒前
香蕉觅云应助hzbzh采纳,获得10
3秒前
3秒前
整齐的慕卉完成签到,获得积分20
4秒前
DI完成签到,获得积分10
4秒前
5秒前
缓慢冷风发布了新的文献求助10
5秒前
5秒前
louziqi发布了新的文献求助10
5秒前
6秒前
快乐发卡发布了新的文献求助10
7秒前
一小只完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
Teamo完成签到,获得积分10
8秒前
8秒前
鸡蛋清abc完成签到,获得积分10
8秒前
9秒前
丶huasheng发布了新的文献求助10
9秒前
秀丽的小懒虫完成签到,获得积分10
9秒前
9秒前
9秒前
晴空发布了新的文献求助10
10秒前
兔兔发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
李健应助Cynthia采纳,获得10
12秒前
虚拟的函发布了新的文献求助10
12秒前
12秒前
Yanglk发布了新的文献求助10
12秒前
刘欣完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105