Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy

医学 单变量 无线电技术 逻辑回归 接收机工作特性 单变量分析 放化疗 磁共振成像 曼惠特尼U检验 回顾性队列研究 宫颈癌 放射科 威尔科克森符号秩检验 阶段(地层学) 多元分析 放射治疗 内科学 癌症 多元统计 统计 数学 生物 古生物学
作者
Riccardo Autorino,Benedetta Gui,Giulia Panza,Luca Boldrini,D. Cusumano,Leila Russo,Alessia Nardangeli,Salvatore Persiani,Maura Campitelli,G. Ferrandina,G. Macchia,Vincenzo Valentini,Maria Antonietta Gambacorta,Roberto Manfredi
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:127 (5): 498-506 被引量:28
标识
DOI:10.1007/s11547-022-01482-9
摘要

The aim of this study is to determine if radiomics features extracted from staging magnetic resonance (MR) images could predict 2-year long-term clinical outcome in patients with locally advanced cervical cancer (LACC) after neoadjuvant chemoradiotherapy (NACRT).We retrospectively enrolled patients with LACC diagnosis who underwent NACRT followed by radical surgery in two different institutions. Radiomics features were extracted from pre-treatment 1.5 T T2w MR images. The predictive performance of each feature was quantified in terms of Wilcoxon-Mann-Whitney test. Among the significant features, Pearson correlation coefficient (PCC) was calculated to quantify the correlation among the different predictors. A logistic regression model was calculated considering the two most significant features at the univariate analysis showing the lowest PCC value. The predictive performance of the model created was quantified out using the area under the receiver operating characteristic curve (AUC).A total of 175 patients were retrospectively enrolled (142 for the training cohort and 33 for the validation one). 1896 radiomic feature were extracted, 91 of which showed significance (p < 0.05) at the univariate analysis. The radiomic model showing the highest predictive value combined the features calculated starting from the gray level co-occurrence-based features. This model achieved an AUC of 0.73 in the training set and 0.91 in the validation set.The proposed radiomic model showed promising performances in predicting 2-year overall survival before NACRT. Nevertheless, the observed results should be tested in larger studies with consistent external validation cohorts, to confirm their potential clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
呆呆完成签到,获得积分10
刚刚
左一酱完成签到 ,获得积分10
1秒前
平淡南霜发布了新的文献求助10
1秒前
Sweet关注了科研通微信公众号
1秒前
1秒前
赘婿应助wangfu采纳,获得10
2秒前
2秒前
2秒前
pipge完成签到,获得积分20
2秒前
3秒前
澳澳发布了新的文献求助10
3秒前
4秒前
清脆的映天完成签到,获得积分10
4秒前
yl驳回了sweetbearm应助
4秒前
隐形曼青应助2鱼采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
香蕉觅云应助junzilan采纳,获得10
5秒前
张老涵发布了新的文献求助10
5秒前
灌饼发布了新的文献求助30
5秒前
罗实发布了新的文献求助10
5秒前
张张发布了新的文献求助10
6秒前
木香发布了新的文献求助10
6秒前
朴实以松发布了新的文献求助10
6秒前
在水一方应助神帅酷哥采纳,获得10
6秒前
7秒前
7秒前
pipge发布了新的文献求助30
7秒前
7秒前
万能图书馆应助卡卡采纳,获得10
7秒前
牛虫虫发布了新的文献求助30
8秒前
8秒前
柔弱飞雪完成签到,获得积分10
8秒前
一种信仰完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
YE完成签到,获得积分10
10秒前
2鱼完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794