Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy

医学 单变量 无线电技术 逻辑回归 接收机工作特性 单变量分析 放化疗 磁共振成像 曼惠特尼U检验 回顾性队列研究 宫颈癌 放射科 威尔科克森符号秩检验 阶段(地层学) 多元分析 放射治疗 内科学 癌症 多元统计 统计 数学 生物 古生物学
作者
Riccardo Autorino,Benedetta Gui,Giulia Panza,Luca Boldrini,D. Cusumano,Leila Russo,Alessia Nardangeli,Salvatore Persiani,Maura Campitelli,G. Ferrandina,G. Macchia,Vincenzo Valentini,Maria Antonietta Gambacorta,Roberto Manfredi
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:127 (5): 498-506 被引量:28
标识
DOI:10.1007/s11547-022-01482-9
摘要

The aim of this study is to determine if radiomics features extracted from staging magnetic resonance (MR) images could predict 2-year long-term clinical outcome in patients with locally advanced cervical cancer (LACC) after neoadjuvant chemoradiotherapy (NACRT).We retrospectively enrolled patients with LACC diagnosis who underwent NACRT followed by radical surgery in two different institutions. Radiomics features were extracted from pre-treatment 1.5 T T2w MR images. The predictive performance of each feature was quantified in terms of Wilcoxon-Mann-Whitney test. Among the significant features, Pearson correlation coefficient (PCC) was calculated to quantify the correlation among the different predictors. A logistic regression model was calculated considering the two most significant features at the univariate analysis showing the lowest PCC value. The predictive performance of the model created was quantified out using the area under the receiver operating characteristic curve (AUC).A total of 175 patients were retrospectively enrolled (142 for the training cohort and 33 for the validation one). 1896 radiomic feature were extracted, 91 of which showed significance (p < 0.05) at the univariate analysis. The radiomic model showing the highest predictive value combined the features calculated starting from the gray level co-occurrence-based features. This model achieved an AUC of 0.73 in the training set and 0.91 in the validation set.The proposed radiomic model showed promising performances in predicting 2-year overall survival before NACRT. Nevertheless, the observed results should be tested in larger studies with consistent external validation cohorts, to confirm their potential clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云隐发布了新的文献求助30
刚刚
LZL完成签到 ,获得积分10
1秒前
汉堡包应助自然的笙采纳,获得10
2秒前
Ye发布了新的文献求助10
2秒前
猴王完成签到,获得积分10
3秒前
4秒前
zz完成签到,获得积分20
5秒前
111完成签到,获得积分10
6秒前
小橘完成签到,获得积分10
6秒前
iNk应助隐形白开水采纳,获得10
8秒前
易姜发布了新的文献求助20
8秒前
CodeCraft应助狠毒的小龙虾采纳,获得10
8秒前
小恐龙飞飞完成签到 ,获得积分10
9秒前
斯文败类应助豆豆采纳,获得10
9秒前
万能图书馆应助Ye采纳,获得10
9秒前
12秒前
木木木木完成签到,获得积分10
12秒前
失眠的哈密瓜完成签到,获得积分10
14秒前
秋意浓发布了新的文献求助10
14秒前
贰陆完成签到,获得积分10
14秒前
uon完成签到,获得积分10
16秒前
科研通AI2S应助小杰杰采纳,获得10
17秒前
qq小兵完成签到,获得积分10
17秒前
19秒前
干净海秋完成签到 ,获得积分10
21秒前
Zz完成签到 ,获得积分10
22秒前
爆米花应助吱哦周采纳,获得10
23秒前
23秒前
wangayting发布了新的文献求助30
24秒前
suxin发布了新的文献求助10
28秒前
帅气的秘密完成签到 ,获得积分10
28秒前
稞小弟完成签到,获得积分10
29秒前
29秒前
30秒前
易姜完成签到,获得积分20
32秒前
东方天奇发布了新的文献求助10
33秒前
吱哦周发布了新的文献求助10
34秒前
KingLancet完成签到,获得积分0
34秒前
蓝桉完成签到 ,获得积分10
35秒前
搜集达人应助科研牛马采纳,获得10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185