An Explainable Attention Network for Fine-Grained Ship Classification Using Remote-Sensing Images

判别式 计算机科学 突出 人工智能 钥匙(锁) 过程(计算) 桥(图论) 特征(语言学) 滤波器(信号处理) 深度学习 机器学习 数据挖掘 模式识别(心理学) 计算机视觉 医学 语言学 哲学 计算机安全 内科学 操作系统
作者
Wei Xiong,Zhenyu Xiong,Yaqi Cui
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:20
标识
DOI:10.1109/tgrs.2022.3162195
摘要

Advances in space-based ocean surveillance systems have improved the detection of objects from high-quality remote-sensing big data. Previous studies mainly focused on finding and recognizing objects based on deep learning and statistical frameworks. Studies have not fully explored the transparent and reasonable decision-making process for the final predicted results, which is vital for civil and military applications. An explainable attention network for fine-grained ship image classification is proposed in the present study to bridge this gap. The present study seeks to increase attention to objects’ discriminative parts and explore intrinsic relationships between multiple attention parts and predicted outcomes. Several causal multi-attention maps are generated by combining the multi-head attention mechanism and structural causal model. The convolutional filters in the last layer of the network are divided into several groups, and each group is designed to express specific semantic information under supervision of the filter loss function. The results show which parts of the objects are adopted as the key factors for the network to make the final predicted outcome. In the training process, the network is designed to rapidly focus on the salient feature of objects and played a role in guiding other parts of the network to improve the explainable capability of the network without affecting the discrimination power or compromising the classification accuracy. Extensive experiments based on two public datasets show that the network is highly effective as indicated by high classification accuracy and explainable ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助高高采纳,获得10
刚刚
Xicuws发布了新的文献求助10
1秒前
1秒前
笨笨的语蝶完成签到,获得积分10
2秒前
young完成签到,获得积分10
2秒前
6秒前
young发布了新的文献求助10
6秒前
8秒前
田様应助Xicuws采纳,获得10
8秒前
结实凌瑶完成签到 ,获得积分10
8秒前
明亮凡梦完成签到,获得积分10
9秒前
那年的伟哥完成签到,获得积分10
9秒前
思源应助bofu采纳,获得10
10秒前
晴偏好发布了新的文献求助10
11秒前
科研通AI2S应助lllllljmjmjm采纳,获得10
12秒前
不忘初心发布了新的文献求助10
12秒前
正直画笔完成签到 ,获得积分10
12秒前
orixero应助大菠萝采纳,获得10
12秒前
12秒前
橘子发布了新的文献求助10
15秒前
屈绮兰发布了新的文献求助60
16秒前
MchemG应助嘟嘟52edm采纳,获得50
17秒前
yuebaoji发布了新的文献求助10
17秒前
18秒前
yang发布了新的文献求助10
19秒前
泡面小分队完成签到,获得积分10
19秒前
19秒前
希望天下0贩的0应助Costing采纳,获得10
20秒前
我爱吃菜完成签到 ,获得积分10
20秒前
21秒前
22秒前
23秒前
hhh发布了新的文献求助10
23秒前
bofu发布了新的文献求助10
24秒前
666发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
27秒前
852应助风中的太阳采纳,获得10
28秒前
莉莉子发布了新的文献求助10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163