An Explainable Attention Network for Fine-Grained Ship Classification Using Remote-Sensing Images

判别式 计算机科学 突出 人工智能 钥匙(锁) 过程(计算) 桥(图论) 特征(语言学) 滤波器(信号处理) 深度学习 机器学习 数据挖掘 模式识别(心理学) 计算机视觉 医学 语言学 哲学 计算机安全 内科学 操作系统
作者
Wei Xiong,Zhenyu Xiong,Yaqi Cui
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:20
标识
DOI:10.1109/tgrs.2022.3162195
摘要

Advances in space-based ocean surveillance systems have improved the detection of objects from high-quality remote-sensing big data. Previous studies mainly focused on finding and recognizing objects based on deep learning and statistical frameworks. Studies have not fully explored the transparent and reasonable decision-making process for the final predicted results, which is vital for civil and military applications. An explainable attention network for fine-grained ship image classification is proposed in the present study to bridge this gap. The present study seeks to increase attention to objects’ discriminative parts and explore intrinsic relationships between multiple attention parts and predicted outcomes. Several causal multi-attention maps are generated by combining the multi-head attention mechanism and structural causal model. The convolutional filters in the last layer of the network are divided into several groups, and each group is designed to express specific semantic information under supervision of the filter loss function. The results show which parts of the objects are adopted as the key factors for the network to make the final predicted outcome. In the training process, the network is designed to rapidly focus on the salient feature of objects and played a role in guiding other parts of the network to improve the explainable capability of the network without affecting the discrimination power or compromising the classification accuracy. Extensive experiments based on two public datasets show that the network is highly effective as indicated by high classification accuracy and explainable ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助通~采纳,获得10
1秒前
端庄的黑米完成签到,获得积分10
1秒前
1秒前
领导范儿应助坤坤采纳,获得10
1秒前
2秒前
神勇的雅香应助司徒迎曼采纳,获得10
2秒前
2秒前
bkagyin应助椰子采纳,获得10
2秒前
Owen应助舒服的茹嫣采纳,获得10
2秒前
呼吸之野应助按住心动采纳,获得20
3秒前
3秒前
身为风帆发布了新的文献求助10
3秒前
changjiaren完成签到,获得积分10
3秒前
风中的怜阳完成签到,获得积分10
4秒前
自信号厂完成签到 ,获得积分10
4秒前
小蘑菇应助ccc采纳,获得10
5秒前
shuo完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
aich完成签到,获得积分10
6秒前
上官若男应助YE采纳,获得10
7秒前
Jasper应助YaoX采纳,获得10
7秒前
天天快乐应助威武绿真采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
8秒前
慕青应助April采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
Xu发布了新的文献求助10
8秒前
manan发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
张张完成签到,获得积分10
9秒前
Dream发布了新的文献求助30
9秒前
9秒前
henry完成签到,获得积分10
10秒前
雾蓝发布了新的文献求助10
10秒前
桃子发布了新的文献求助10
10秒前
烟花应助刘星星采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740