Machine learning-based approach for identifying mental workload of pilots

线性判别分析 支持向量机 人工智能 计算机科学 分类器(UML) 模式识别(心理学) 工作量 起飞 特征选择 特征提取 线性分类器 机器学习 工程类 操作系统 航空航天工程
作者
K. Mohanavelu,S. Poonguzhali,Janani Arivudaiyanambi,S V Vinutha
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103623-103623 被引量:26
标识
DOI:10.1016/j.bspc.2022.103623
摘要

In general, the fighter pilots are required to engage themselves entirely during flight operations involved in air-to-air combat while in the cockpit of a fighter aircraft. The performance has to be monitored continuously by classifying their cognitive workload levels during different phases of flying. Towards this direction, an experimental study was conducted in a realistic high-fidelity flight simulator environment to classify the Pilots’ Cognitive Workload (PCWL) level. A real-time implementation of algorithms to effectively organize the PCWL during takeoff, cruise and landing phases, physiological signals such as ECG and EEG of fighter pilots are used. The classification algorithms such as Linear Discriminant Analysis (LDA) classifier, Support Vector Machine (SVM) classifier, k-Nearest Neighbour (k-NN) classifier have been employed. It has resulted that takeoff (LDA – 75%, kNN – 60% and SVM – 75%) and landing phase (LDA – 75%, kNN – 60% and SVM – 75%) was better classified by HRV features while using PCA and cruise phase was classified better using EEG features (LDA – 72.44%, kNN – 62.92% and SVM – 59.02%) when PCA feature reduction technique was adopted. Using significant features by feature selection methods (PCA, statistically significant features) have shown improved classification accuracy compared to all the features classification method. The LDA and SVM are consistent classifiers compare to the kNN classifier. This study helps to classify the PCWL level at each flying phase due to increased task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
心流完成签到,获得积分10
3秒前
顾矜应助纯真忆安采纳,获得10
5秒前
壮观以松发布了新的文献求助10
5秒前
慕青应助大方的冬萱采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
机智紫寒完成签到,获得积分10
6秒前
Anne完成签到,获得积分10
6秒前
7秒前
田鹤飞发布了新的文献求助10
7秒前
8秒前
忐忑的新蕾完成签到 ,获得积分10
8秒前
活泼蓝完成签到,获得积分10
11秒前
王www发布了新的文献求助10
12秒前
13秒前
Yangaaa发布了新的文献求助10
15秒前
三岁发布了新的文献求助10
18秒前
18秒前
纯真忆安发布了新的文献求助10
19秒前
小高完成签到 ,获得积分10
20秒前
陈茂甲完成签到,获得积分10
20秒前
20秒前
希望天下0贩的0应助fkdbdy采纳,获得10
21秒前
phoenix完成签到,获得积分0
22秒前
斯文败类应助恋雅颖月采纳,获得10
23秒前
25秒前
张张发布了新的文献求助10
26秒前
传奇3应助纯真忆安采纳,获得10
29秒前
29秒前
30秒前
genomed完成签到,获得积分0
31秒前
李想完成签到,获得积分10
31秒前
mildJYY完成签到,获得积分10
32秒前
情怀应助solar@2030采纳,获得10
34秒前
大模型应助王www采纳,获得10
35秒前
CipherSage应助ZXW采纳,获得10
35秒前
genomed发布了新的文献求助10
35秒前
duonicola发布了新的文献求助10
37秒前
陈茂甲发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844