Machine learning-based approach for identifying mental workload of pilots

线性判别分析 支持向量机 人工智能 计算机科学 分类器(UML) 模式识别(心理学) 工作量 起飞 特征选择 特征提取 线性分类器 机器学习 工程类 操作系统 航空航天工程
作者
K. Mohanavelu,S. Poonguzhali,Janani Arivudaiyanambi,S V Vinutha
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103623-103623 被引量:26
标识
DOI:10.1016/j.bspc.2022.103623
摘要

In general, the fighter pilots are required to engage themselves entirely during flight operations involved in air-to-air combat while in the cockpit of a fighter aircraft. The performance has to be monitored continuously by classifying their cognitive workload levels during different phases of flying. Towards this direction, an experimental study was conducted in a realistic high-fidelity flight simulator environment to classify the Pilots’ Cognitive Workload (PCWL) level. A real-time implementation of algorithms to effectively organize the PCWL during takeoff, cruise and landing phases, physiological signals such as ECG and EEG of fighter pilots are used. The classification algorithms such as Linear Discriminant Analysis (LDA) classifier, Support Vector Machine (SVM) classifier, k-Nearest Neighbour (k-NN) classifier have been employed. It has resulted that takeoff (LDA – 75%, kNN – 60% and SVM – 75%) and landing phase (LDA – 75%, kNN – 60% and SVM – 75%) was better classified by HRV features while using PCA and cruise phase was classified better using EEG features (LDA – 72.44%, kNN – 62.92% and SVM – 59.02%) when PCA feature reduction technique was adopted. Using significant features by feature selection methods (PCA, statistically significant features) have shown improved classification accuracy compared to all the features classification method. The LDA and SVM are consistent classifiers compare to the kNN classifier. This study helps to classify the PCWL level at each flying phase due to increased task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云为晓发布了新的文献求助10
1秒前
1秒前
王博士发布了新的文献求助10
1秒前
大个应助net80yhm采纳,获得10
2秒前
羊小毛发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
Matt发布了新的文献求助10
3秒前
碧蓝世立发布了新的文献求助10
4秒前
du30发布了新的文献求助10
4秒前
hql完成签到 ,获得积分10
6秒前
忧郁的水仙花完成签到,获得积分10
6秒前
非凡梦发布了新的文献求助10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
jiaojiao发布了新的文献求助10
9秒前
9秒前
黄黄发布了新的文献求助30
9秒前
Kecrin完成签到,获得积分10
9秒前
科研通AI2S应助Matt采纳,获得10
10秒前
沉静镜子发布了新的文献求助10
10秒前
大个应助云为晓采纳,获得10
11秒前
笨笨的完成签到,获得积分10
11秒前
s180500428发布了新的文献求助10
13秒前
qianZhang发布了新的文献求助10
13秒前
14秒前
14秒前
yy完成签到,获得积分10
14秒前
kiki0808完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
科研通AI6应助慕洋采纳,获得10
16秒前
张先生2365完成签到,获得积分10
17秒前
小猪发布了新的文献求助10
18秒前
18秒前
领导范儿应助认真科研采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075278
求助须知:如何正确求助?哪些是违规求助? 4295158
关于积分的说明 13383568
捐赠科研通 4116817
什么是DOI,文献DOI怎么找? 2254505
邀请新用户注册赠送积分活动 1259126
关于科研通互助平台的介绍 1191907