Rotavirus, Intestinal Barrier Function, and Probiotics

轮状病毒 鼠李糖乳杆菌 医学 益生菌 腹泻 接种疫苗 免疫 势垒函数 免疫学 病毒学 微生物学 免疫系统 生物 内科学 细胞生物学 细菌 遗传学
作者
Mark E. Lowe
出处
期刊:Journal of Pediatric Gastroenterology and Nutrition [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (6): 687-687
标识
DOI:10.1097/mpg.0000000000000180
摘要

See “Lactobacillus rhamnosus GG on Rotavirus-Induced Injury of Ileal Epithelium in Gnotobiotic Pigs” by Liu et al on page 750. To many readers, studies of probiotics in rotavirus infection seem unnecessary given the effectiveness of rotavirus vaccines. Unfortunately, vaccine cost limits widespread immunization and rotavirus infection remains a leading reason for hospitalization and a significant cause of preventable deaths in low-income countries (1). In response to World Health Organization recommendations to include rotavirus vaccines in all immunization programs, public and private collaborations have funded rotavirus vaccinations in developing countries with plans to expand to >30 developing countries by 2015 (2). Even so, many developing countries still will not have rotavirus vaccination programs. Consequently, interest in alternative therapies, such as probiotics, remains keen. The best-studied probiotic, Lactobacillus rhamnosus GG, modestly reduces the duration of diarrhea in acute rotavirus infection and reduces the incidence of health care–associated rotavirus infection through undefined mechanisms (3,4). In this issue of the Journal of Pediatric Gastroenterology and Nutrition, Liu et al (5) evaluate the response of gnotobiotic pigs to rotavirus infection and the effect of Lactobacillus GG on rotavirus infection. During rotavirus infection, cultured intestinal epithelial cells increase mucin production and lose barrier function (6,7). Barrier function depends on intracellular tight junctions to prevent the entrance of microorganisms and other substances into the paracellular space and on adherens junctions to maintain points of cell-to-cell contact (8). Proteins from the zona occludens, occludin, and claudin families contribute to the junctions. Most claudins seal the junctions, whereas claudin-2 increases permeability. Disruption of the intestinal barrier increases expression of claudin-2 and the sealing claudins because the cells repair the tight junctions. In cell cultures, Lactobacillus GG improves barrier function by increasing production of sealing claudins and mucin. To define in vivo events, Liu et al studied gnotobiotic pigs. Pigs develop rotavirus gastroenteritis similar to humans. Additionally, the gnotobiotic status controls for effects of maternal antibodies and commensal microflora. They evaluated 4 treatment groups: mock infection, Lactobacillus GG only, human rotavirus only, and Lactobacillus GG with rotavirus. Lactobacillus GG doses were given before and after infection. They measured clinical symptoms, viral shedding, histology of the ileum, expression levels of tight junction proteins, mucin production, and serum cytokine levels. Unfortunately, the study was underpowered to detect differences in clinical parameters other than a lower incidence of diarrhea in the Lactobacillus GG–fed pigs. Because the probiotics were provided before and after rotavirus infection, the effect could be secondary to prevention or treatment of the infection or both. This design severely limits translation into clinical practice, especially in developing countries where continual delivery of probiotics would be prohibitively expensive. Two other observations provide the major contributions of this report. First, larger inoculums of Lactobacillus GG did not further increase bacterial counts, suggesting the immune system regulates colonization. This observation implies that higher doses may not increase efficacy. Second, Lactobacillus GG treatment altered the expression of tight junction proteins, increased mucin production, and prevented the rise of transforming growth factor-β serum levels. These results provide insight into the mechanisms of rotavirus injury, Lactobacillus GG function, and validate the gnotobiotic pig model. The authors have laid the groundwork for additional studies to define the molecular details of probiotic effects on intestinal epithelium in a model that allows them to test multiple variables such as the commensal microbiome and maternal antibodies. Whether information gleaned from this model ultimately translates to novel treatments for human disease remains speculative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的二休完成签到,获得积分10
1秒前
易水完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
allzzwell完成签到 ,获得积分10
6秒前
方圆完成签到 ,获得积分10
6秒前
Dsunflower完成签到 ,获得积分10
6秒前
英俊的铭应助忧伤的怜晴采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
kyt_vip完成签到,获得积分10
9秒前
Bismarck完成签到,获得积分10
12秒前
basil完成签到,获得积分10
13秒前
nkr完成签到,获得积分10
14秒前
叶子完成签到 ,获得积分10
14秒前
小张完成签到 ,获得积分10
16秒前
22秒前
胖胖完成签到 ,获得积分0
23秒前
量子星尘发布了新的文献求助10
24秒前
烈阳初现发布了新的文献求助10
26秒前
尔信完成签到 ,获得积分10
26秒前
LXZ完成签到,获得积分10
27秒前
黄启烽完成签到,获得积分10
27秒前
瓦罐完成签到 ,获得积分10
30秒前
Perrylin718完成签到,获得积分10
31秒前
笨笨青筠完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
Bioflying完成签到,获得积分10
36秒前
阿达完成签到 ,获得积分10
36秒前
urologywang完成签到 ,获得积分10
37秒前
好好应助科研通管家采纳,获得10
40秒前
好好应助科研通管家采纳,获得10
40秒前
慕青应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
卑微学术人完成签到 ,获得积分10
42秒前
43秒前
111111完成签到,获得积分10
44秒前
烈阳初现完成签到,获得积分10
44秒前
笑林完成签到 ,获得积分10
44秒前
谨慎的凝丝完成签到,获得积分10
46秒前
岩松完成签到 ,获得积分10
48秒前
布吉布完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839