Carboxyl Terminus of Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Self-Association Analysis and Nucleic Acid Binding Characterization

核酸 C端 冠状病毒 N端 核糖核酸 化学 突变体 RNA结合蛋白 氨基酸 生物化学 血浆蛋白结合 肽序列 生物 分子生物学 2019年冠状病毒病(COVID-19) 基因 医学 传染病(医学专业) 病理 疾病
作者
Hai‐Bin Luo,Jing Chen,Kaixian Chen,Xu Shen,Hualiang Jiang
出处
期刊:Biochemistry [American Chemical Society]
卷期号:45 (39): 11827-11835 被引量:84
标识
DOI:10.1021/bi0609319
摘要

Coronavirus nucleocapsid (N) protein envelops the genomic RNA to form long helical nucleocapsid during virion assembly. Since N protein oligomerization is usually a crucial step in this process, characterization of such an oligomerization will help in the understanding of the possible mechanisms for nucleocapsid formation. The N protein of severe acute respiratory syndrome coronavirus (SARS-CoV) was recently discovered to self-associate by its carboxyl terminus. In this study, to further address the detailed understanding of the association feature of this C-terminus, its oligomerization was systematically investigated by size exclusion chromatography and chemical cross-linking assays. Our results clearly indicated that the C-terminal domain of SARS-CoV N protein could form not only dimers but also trimers, tetramers, and hexamers. Further analyses against six deletion mutants showed that residues 343-402 were necessary and sufficient for this C-terminus oligomerization. Although this segment contains many charged residues, differences in ionic strength have no effects on its oligomerization, indicating the absence of electrostatic force in SARS-CoV N protein C-terminus self-association. Gel shift assay results revealed that the SARS-CoV N protein C-terminus is also able to associate with nucleic acids and residues 363-382 are the responsible interaction partner, demonstrating that this fragment might involve genomic RNA binding sites. The fact that nucleic acid binding could promote the SARS-CoV N protein C-terminus to form high-order oligomers implies that the oligomeric SARS-CoV N protein probably combines with the viral genomic RNA in triggering long nucleocapsid formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助1111采纳,获得10
刚刚
lwei完成签到,获得积分20
刚刚
白蕲发布了新的文献求助10
刚刚
cindy发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
笑笑完成签到,获得积分10
2秒前
3秒前
默默的芙完成签到,获得积分10
3秒前
xm发布了新的文献求助10
3秒前
3秒前
4秒前
陈佳琪完成签到,获得积分10
4秒前
LU完成签到,获得积分10
4秒前
4秒前
4秒前
lwei发布了新的文献求助10
4秒前
设计狂魔应助九川采纳,获得30
4秒前
LiShin发布了新的文献求助10
5秒前
song完成签到,获得积分10
6秒前
Phoebe1996发布了新的文献求助10
6秒前
yannis2020发布了新的文献求助10
6秒前
小猴发布了新的文献求助10
7秒前
酷酷的老太完成签到 ,获得积分20
7秒前
7秒前
锣大炮完成签到,获得积分10
8秒前
maqin完成签到,获得积分10
8秒前
小王完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
科研通AI2S应助lwei采纳,获得10
8秒前
幽默的念双完成签到,获得积分10
8秒前
正直冰露发布了新的文献求助10
9秒前
标致小伙发布了新的文献求助10
9秒前
9秒前
pinkdon完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762