Improving the prediction performance of a large tropical vis‐NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques

校准 均方误差 聚类分析 线性回归 偏最小二乘回归 土壤有机质 支持向量机 数据集 数学 环境科学 遥感 土壤科学 计算机科学 统计 土壤水分 人工智能 地质学
作者
Suzana Romeiro Araújo,Johanna Wetterlind,José Alexandre Melo Demattê,Bo Stenberg
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:65 (5): 718-729 被引量:133
标识
DOI:10.1111/ejss.12165
摘要

Summary Effective agricultural planning requires basic soil information. In recent decades visible near‐infrared diffuse reflectance spectroscopy (vis‐ NIR ) has been shown to be a viable alternative for rapidly analysing soil properties. We studied 7172 samples of seven different soil types collected from several regions of B razil and varying in organic matter ( OM ) (0.2–10.3%) and clay content (0.2–99.0%). The aim was to explore the possibility of enhancing the performance of vis‐ NIR data in predicting organic matter and clay content in this library by dividing it into smaller sub‐libraries on the basis of their vis‐ NIR spectra. We used partial least square regression ( PLSR ) models on the sub‐libraries and compared the results with PLSR and two non‐linear calibration techniques, boosted regression trees ( BT ) and support vector machines ( SVM ) applied to the whole library. The whole library calibrations for clay performed well ( ME (modelling efficiency) > 0.82; RMSE (root mean squared error) < 10.9%), reflecting the influence of the direct spectral responses of this property in the vis‐ NIR range. Calibrations for OM were reasonably good, especially in view of the very small variation in this property ( ME > 0.60; RMSE < 0.55%). The best results were, however, found when dividing the large library into smaller subsets by using variation in the mean‐normalized or first derivative spectra. This divided the global data set into clusters that were more uniform in mineralogy, regardless of geographical origin, and improved predictive performance. The best clustering method improved the RMSE in the validation to 8.6% clay and 0.47% OM , which corresponds to a 21% and 15% reduction, respectively, as compared with whole library PLSR . For the whole library, SVM performed almost equally well, reducing RMSE to 8.9% clay and 0.48% OM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
balzacsun发布了新的文献求助10
1秒前
JamesPei应助星星采纳,获得10
1秒前
2秒前
2秒前
laodie完成签到,获得积分10
3秒前
彭于晏应助ipeakkka采纳,获得10
3秒前
3秒前
敏感的芷发布了新的文献求助10
3秒前
susan发布了新的文献求助10
3秒前
4秒前
李爱国应助轻松的贞采纳,获得10
4秒前
wz完成签到,获得积分10
5秒前
子川完成签到 ,获得积分10
5秒前
怕孤独的鹭洋完成签到,获得积分10
5秒前
6秒前
耍酷的夏云完成签到,获得积分10
6秒前
laodie发布了新的文献求助10
7秒前
7秒前
小达完成签到,获得积分10
7秒前
nenoaowu发布了新的文献求助10
7秒前
文章要有性价比完成签到,获得积分10
8秒前
俏皮半烟完成签到,获得积分10
8秒前
Aki发布了新的文献求助10
8秒前
111完成签到,获得积分10
10秒前
耗尽完成签到,获得积分10
10秒前
烂漫驳发布了新的文献求助10
12秒前
轻松的贞完成签到,获得积分10
13秒前
李健应助balzacsun采纳,获得10
14秒前
轻松的悟空完成签到 ,获得积分10
16秒前
susan完成签到,获得积分10
17秒前
0029完成签到,获得积分10
19秒前
Aki完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
22秒前
LXR完成签到,获得积分10
24秒前
thchiang发布了新的文献求助10
25秒前
李健应助北城采纳,获得10
25秒前
WDK发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824