亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the prediction performance of a large tropical vis‐NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques

校准 均方误差 聚类分析 线性回归 偏最小二乘回归 土壤有机质 支持向量机 数据集 数学 环境科学 遥感 土壤科学 计算机科学 统计 土壤水分 人工智能 地质学
作者
Suzana Romeiro Araújo,Johanna Wetterlind,José Alexandre Melo Demattê,Bo Stenberg
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:65 (5): 718-729 被引量:133
标识
DOI:10.1111/ejss.12165
摘要

Summary Effective agricultural planning requires basic soil information. In recent decades visible near‐infrared diffuse reflectance spectroscopy (vis‐ NIR ) has been shown to be a viable alternative for rapidly analysing soil properties. We studied 7172 samples of seven different soil types collected from several regions of B razil and varying in organic matter ( OM ) (0.2–10.3%) and clay content (0.2–99.0%). The aim was to explore the possibility of enhancing the performance of vis‐ NIR data in predicting organic matter and clay content in this library by dividing it into smaller sub‐libraries on the basis of their vis‐ NIR spectra. We used partial least square regression ( PLSR ) models on the sub‐libraries and compared the results with PLSR and two non‐linear calibration techniques, boosted regression trees ( BT ) and support vector machines ( SVM ) applied to the whole library. The whole library calibrations for clay performed well ( ME (modelling efficiency) > 0.82; RMSE (root mean squared error) < 10.9%), reflecting the influence of the direct spectral responses of this property in the vis‐ NIR range. Calibrations for OM were reasonably good, especially in view of the very small variation in this property ( ME > 0.60; RMSE < 0.55%). The best results were, however, found when dividing the large library into smaller subsets by using variation in the mean‐normalized or first derivative spectra. This divided the global data set into clusters that were more uniform in mineralogy, regardless of geographical origin, and improved predictive performance. The best clustering method improved the RMSE in the validation to 8.6% clay and 0.47% OM , which corresponds to a 21% and 15% reduction, respectively, as compared with whole library PLSR . For the whole library, SVM performed almost equally well, reducing RMSE to 8.9% clay and 0.48% OM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzyyy应助风止采纳,获得10
刚刚
顺利芸发布了新的文献求助10
3秒前
顺利芸完成签到,获得积分20
16秒前
19秒前
zhiyu发布了新的文献求助10
24秒前
24秒前
乐乐乐乐乐乐应助顺利芸采纳,获得10
26秒前
完美的海完成签到 ,获得积分0
32秒前
33秒前
38秒前
shenhai发布了新的文献求助10
44秒前
优雅苑睐完成签到,获得积分10
48秒前
49秒前
Lucifer完成签到,获得积分10
54秒前
55秒前
kk_1315完成签到,获得积分10
58秒前
脑洞疼应助科研通管家采纳,获得10
59秒前
Lucas应助科研通管家采纳,获得30
59秒前
景辣条应助结实的海白采纳,获得10
1分钟前
Mia发布了新的文献求助10
1分钟前
1分钟前
大学生完成签到 ,获得积分10
1分钟前
13504544355完成签到 ,获得积分10
1分钟前
zhiyu完成签到,获得积分10
1分钟前
1分钟前
step_stone完成签到,获得积分10
1分钟前
felix发布了新的文献求助10
1分钟前
爱吃蒸蛋完成签到,获得积分10
1分钟前
脑洞疼应助打地鼠工人采纳,获得10
1分钟前
星辰大海应助Jackylee采纳,获得10
1分钟前
1分钟前
泡面小猪发布了新的文献求助10
1分钟前
1分钟前
星辰大海应助星落枝头采纳,获得10
1分钟前
景辣条完成签到,获得积分10
1分钟前
1分钟前
Ni发布了新的文献求助10
1分钟前
2分钟前
Tendency完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989