Improving the prediction performance of a large tropical vis‐NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques

校准 均方误差 聚类分析 线性回归 偏最小二乘回归 土壤有机质 支持向量机 数据集 数学 环境科学 遥感 土壤科学 计算机科学 统计 土壤水分 人工智能 地质学
作者
Suzana Romeiro Araújo,Johanna Wetterlind,José Alexandre Melo Demattê,Bo Stenberg
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:65 (5): 718-729 被引量:133
标识
DOI:10.1111/ejss.12165
摘要

Summary Effective agricultural planning requires basic soil information. In recent decades visible near‐infrared diffuse reflectance spectroscopy (vis‐ NIR ) has been shown to be a viable alternative for rapidly analysing soil properties. We studied 7172 samples of seven different soil types collected from several regions of B razil and varying in organic matter ( OM ) (0.2–10.3%) and clay content (0.2–99.0%). The aim was to explore the possibility of enhancing the performance of vis‐ NIR data in predicting organic matter and clay content in this library by dividing it into smaller sub‐libraries on the basis of their vis‐ NIR spectra. We used partial least square regression ( PLSR ) models on the sub‐libraries and compared the results with PLSR and two non‐linear calibration techniques, boosted regression trees ( BT ) and support vector machines ( SVM ) applied to the whole library. The whole library calibrations for clay performed well ( ME (modelling efficiency) > 0.82; RMSE (root mean squared error) < 10.9%), reflecting the influence of the direct spectral responses of this property in the vis‐ NIR range. Calibrations for OM were reasonably good, especially in view of the very small variation in this property ( ME > 0.60; RMSE < 0.55%). The best results were, however, found when dividing the large library into smaller subsets by using variation in the mean‐normalized or first derivative spectra. This divided the global data set into clusters that were more uniform in mineralogy, regardless of geographical origin, and improved predictive performance. The best clustering method improved the RMSE in the validation to 8.6% clay and 0.47% OM , which corresponds to a 21% and 15% reduction, respectively, as compared with whole library PLSR . For the whole library, SVM performed almost equally well, reducing RMSE to 8.9% clay and 0.48% OM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺发布了新的文献求助10
刚刚
wzx完成签到 ,获得积分10
1秒前
骑着火车撵火箭完成签到,获得积分10
1秒前
zhhh发布了新的文献求助10
1秒前
欢檬应助高挑的不凡采纳,获得10
2秒前
阳佟半仙完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
阿柒完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助淡淡的忆彤采纳,获得10
4秒前
香蕉觅云应助AUSTINZHOU采纳,获得10
5秒前
闲谈发布了新的文献求助10
5秒前
是苗苗丫完成签到,获得积分10
5秒前
璇璇完成签到 ,获得积分10
5秒前
5秒前
nevermore完成签到,获得积分10
6秒前
小张z完成签到,获得积分10
8秒前
mingjie完成签到,获得积分10
8秒前
8秒前
8秒前
华仔应助顺顺采纳,获得10
8秒前
沈丽红完成签到,获得积分10
9秒前
9秒前
小仓完成签到,获得积分10
9秒前
塞西尔发布了新的文献求助10
9秒前
上单马冬梅完成签到,获得积分10
10秒前
DR_Su完成签到,获得积分10
10秒前
10秒前
还原糖完成签到,获得积分10
11秒前
风中的电脑完成签到,获得积分10
13秒前
13秒前
现实的阔阔完成签到 ,获得积分10
13秒前
七月发布了新的文献求助10
13秒前
爆米花应助Ode采纳,获得10
15秒前
Naveed完成签到,获得积分10
15秒前
小仓发布了新的文献求助10
15秒前
斯文败类应助科研通管家采纳,获得10
16秒前
聪慧芷巧应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459