卡尔曼滤波器
状态向量
滤波器(信号处理)
扩展卡尔曼滤波器
集合卡尔曼滤波器
贝叶斯概率
高斯分布
噪音(视频)
不变扩展卡尔曼滤波器
非线性滤波器
集合(抽象数据类型)
跟踪(教育)
非线性系统
数学
国家(计算机科学)
计算机科学
高斯噪声
人工智能
算法
控制理论(社会学)
递归贝叶斯估计
滤波器设计
物理
计算机视觉
图像(数学)
教育学
经典力学
心理学
量子力学
程序设计语言
控制(管理)
作者
Neil Gordon,David Salmond,A. F. M. Smith
出处
期刊:IEE proceedings
[Institution of Electrical Engineers]
日期:1993-01-01
卷期号:140 (2): 107-107
被引量:7482
标识
DOI:10.1049/ip-f-2.1993.0015
摘要
An algorithm, the bootstrap filter, is proposed for implementing recursive Bayesian filters. The required density of the state vector is represented as a set of random samples, which are updated and propagated by the algorithm. The method is not restricted by assumptions of linearity or Gaussian noise: it may be applied to any state transition or measurement model. A simulation example of the bearings only tracking problem is presented. This simulation includes schemes for improving the efficiency of the basic algorithm. For this example, the performance of the bootstrap filter is greatly superior to the standard extended Kalman filter.
科研通智能强力驱动
Strongly Powered by AbleSci AI