自愈水凝胶
纳米技术
材料科学
再生医学
组织工程
生物矿化
药物输送
生物物理学
生物医学工程
化学
化学工程
细胞
生物化学
工程类
生物
高分子化学
标识
DOI:10.1002/adem.200700355
摘要
Abstract Smart polymeric‐based devices and surfaces that reversibly alter their physico‐chemical characteristics in response to their environment are the center of many studies related to the development of materials and concepts in a broad‐range of biomedical fields. Although the initial interests were more focused in systems for the delivery of therapeutic molecules, other applications have been raised in topics ranging from actuators to biomaterials for tissue engineering and regenerative medicine. The general aspects of the different types of stimuli that can be used to modulate the response are reviewed mainly for the case of hydrogels and surfaces, based on natural‐origin or biodegradable macromolecules. Thermosensitive or light responsive surfaces that can modulate cell adhesion or protein adsorption are addressed as well as less conventional smart surfaces, such as substrates onto which biomineralization may be triggered. Injectable liquids that turn to gels by the action of heating (sol‐gel thermo‐reversible hydrogels) or by changing pH or the ionic milieu (bioinspired self‐assembling systems) may find great applicability as temporary scaffolds in non invasive procedures to deliver drugs or cells to particular places in the body. Examples of systems that recognize independently or simultaneously more than one stimulus will also be presented. Besides the typical response to temperature and pH, recent developments on materials that react to biochemical stimuli, including specific enzymes, antibodies or cells, are also highlighted.
科研通智能强力驱动
Strongly Powered by AbleSci AI