微塑料
环境科学
筛子(范畴论)
采样(信号处理)
海水
沉积物
塑料污染
环境化学
分类
污染
化学
生态学
滤波器(信号处理)
生物
数学
计算机科学
算法
古生物学
组合数学
计算机视觉
作者
Valeria Hidalgo‐Ruz,Lars Gutow,Richard C. Thompson,Martín Thiel
摘要
This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are "items per m2" for sediment and sea surface studies and "items per m3" for water column studies. Mesh size of sieves and filters used during sampling or sample processing influence abundance estimates. Most studies reported two main size ranges of microplastics: (i) 500 μm–5 mm, which are retained by a 500 μm sieve/net, and (ii) 1–500 μm, or fractions thereof that are retained on filters. We recommend that future programs of monitoring continue to distinguish these size fractions, but we suggest standardized sampling procedures which allow the spatiotemporal comparison of microplastic abundance across marine environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI