Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification

微塑料 环境科学 筛子(范畴论) 采样(信号处理) 海水 沉积物 塑料污染 环境化学 分类 污染 化学 生态学 滤波器(信号处理) 生物 数学 计算机科学 组合数学 古生物学 计算机视觉 算法
作者
Valeria Hidalgo‐Ruz,Lars Gutow,Richard C. Thompson,Martín Thiel
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:46 (6): 3060-3075 被引量:4370
标识
DOI:10.1021/es2031505
摘要

This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are "items per m(2)" for sediment and sea surface studies and "items per m(3)" for water column studies. Mesh size of sieves and filters used during sampling or sample processing influence abundance estimates. Most studies reported two main size ranges of microplastics: (i) 500 μm-5 mm, which are retained by a 500 μm sieve/net, and (ii) 1-500 μm, or fractions thereof that are retained on filters. We recommend that future programs of monitoring continue to distinguish these size fractions, but we suggest standardized sampling procedures which allow the spatiotemporal comparison of microplastic abundance across marine environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyy发布了新的文献求助10
刚刚
zhappy发布了新的文献求助20
刚刚
1秒前
稳重的八宝粥完成签到 ,获得积分10
2秒前
2秒前
xx关闭了xx文献求助
2秒前
3秒前
5秒前
6秒前
su发布了新的文献求助10
6秒前
小马甲应助鳗鱼灵寒采纳,获得10
6秒前
calbee发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
8秒前
8秒前
张辰12536完成签到,获得积分10
9秒前
10秒前
程琳发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
88完成签到,获得积分10
11秒前
我是站长才怪应助谭谨川采纳,获得10
11秒前
1233发布了新的文献求助10
12秒前
bismarck7完成签到,获得积分10
12秒前
12秒前
12秒前
田様应助淡淡采白采纳,获得10
12秒前
赖道之发布了新的文献求助10
13秒前
calbee完成签到,获得积分10
13秒前
13秒前
和谐白云完成签到,获得积分10
14秒前
14秒前
14秒前
王w发布了新的文献求助10
15秒前
yyyyy完成签到,获得积分10
16秒前
16秒前
大侠发布了新的文献求助10
16秒前
魁梧的乐天完成签到,获得积分20
16秒前
冯度翩翩完成签到,获得积分10
17秒前
科研通AI2S应助satchzhao采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808