A network-based analysis of traditional Chinese medicine cold and hot patterns in rheumatoid arthritis

基因 基因本体论 微阵列 类风湿性关节炎 计算生物学 医学 基因表达 微阵列分析技术 中医药 交互网络 信号转导 生物信息学 生物 遗传学 免疫学 病理 替代医学
作者
Chen Gao,Cheng Lü,Qinglin Zha,Cheng Xiao,Shiqi Xu,Dianwen Ju,Youwen Zhou,Jia Wang,Aiping Lü
出处
期刊:Complementary Therapies in Medicine [Elsevier]
卷期号:20 (1-2): 23-30 被引量:52
标识
DOI:10.1016/j.ctim.2011.10.005
摘要

Rheumatoid arthritis (RA) is a heterogeneous disease, and traditional Chinese medicine (TCM) can be used to classify RA into different patterns such as cold and hot based on its clinical manifestations. The aim of this study was to investigate potential network-based biomarkers for RA with either a cold or a hot pattern.Microarray technology was used to reveal gene expression profiles in CD4(+) T cells from 21 RA patients with cold pattern and 12 with hot pattern. A T-test was used to identify significant differences in gene expression among RA patients with either cold or hot pattern. Cytoscape software was used to search the existing literature and databases for protein-protein interaction information for genes of interest that were identified from this analysis. The IPCA algorithm was used to detect highly connected regions for inferring significant complexes or pathways in this protein-protein interaction network. Significant pathways and functions were extracted from these subnetworks by the Biological Network Gene Ontology tool.Four genes were expressed at higher levels in RA patients with cold pattern than in patients with hot pattern, and 21 genes had lower levels of expression. Protein-protein interaction network analysis for these genes showed that there were four highly connected regions. The most relevant functions and pathways extracted from these subnetwork regions were involved in small G protein signaling pathways, oxidation-reduction in fatty acid metabolism and T cell proliferation.Complicated network based pathways appear to play a role in the different pattern manifestations in patients with RA, and our results suggest that network-based pathways might be the scientific basis for TCM pattern classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到 ,获得积分10
3秒前
迅速的念芹完成签到 ,获得积分10
12秒前
Dr.Tang完成签到 ,获得积分10
13秒前
小燕子完成签到 ,获得积分10
30秒前
科研岳完成签到,获得积分10
32秒前
echo完成签到 ,获得积分10
56秒前
Polymer72应助Wd采纳,获得10
1分钟前
又又完成签到,获得积分10
1分钟前
中恐完成签到,获得积分10
1分钟前
subass完成签到 ,获得积分10
1分钟前
清逸之风完成签到 ,获得积分10
1分钟前
无花果应助Tonald Yang采纳,获得10
1分钟前
开放访天完成签到 ,获得积分10
1分钟前
1分钟前
今后应助彦成采纳,获得10
1分钟前
华蔓月完成签到 ,获得积分10
1分钟前
1分钟前
微风发布了新的文献求助20
1分钟前
彦成发布了新的文献求助10
1分钟前
SharonDu完成签到 ,获得积分10
1分钟前
嗯哼应助微风采纳,获得20
1分钟前
钟声完成签到,获得积分10
2分钟前
微风完成签到,获得积分10
2分钟前
Polymer72应助科研通管家采纳,获得200
2分钟前
星宇完成签到 ,获得积分10
2分钟前
ycw7777完成签到,获得积分10
2分钟前
飞快的蜻蜓完成签到,获得积分20
2分钟前
飞快的蜻蜓关注了科研通微信公众号
2分钟前
数乱了梨花完成签到 ,获得积分10
2分钟前
Xiangyang完成签到 ,获得积分10
2分钟前
飞快的蜻蜓关注了科研通微信公众号
2分钟前
笨笨忘幽完成签到,获得积分10
2分钟前
2分钟前
小pppp发布了新的文献求助10
2分钟前
HH1202完成签到 ,获得积分10
3分钟前
今后应助小pppp采纳,获得10
3分钟前
彦成完成签到,获得积分10
3分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
高海龙完成签到 ,获得积分10
3分钟前
831143完成签到 ,获得积分0
3分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341890
求助须知:如何正确求助?哪些是违规求助? 2969246
关于积分的说明 8637937
捐赠科研通 2648911
什么是DOI,文献DOI怎么找? 1450469
科研通“疑难数据库(出版商)”最低求助积分说明 671913
邀请新用户注册赠送积分活动 660986