A network-based analysis of traditional Chinese medicine cold and hot patterns in rheumatoid arthritis

基因 基因本体论 微阵列 类风湿性关节炎 计算生物学 医学 基因表达 微阵列分析技术 中医药 交互网络 信号转导 生物信息学 生物 遗传学 免疫学 病理 替代医学
作者
Chen Gao,Cheng Lü,Qinglin Zha,Cheng Xiao,Shiqi Xu,Dianwen Ju,Youwen Zhou,Jia Wang,Aiping Lü
出处
期刊:Complementary Therapies in Medicine [Elsevier]
卷期号:20 (1-2): 23-30 被引量:52
标识
DOI:10.1016/j.ctim.2011.10.005
摘要

Rheumatoid arthritis (RA) is a heterogeneous disease, and traditional Chinese medicine (TCM) can be used to classify RA into different patterns such as cold and hot based on its clinical manifestations. The aim of this study was to investigate potential network-based biomarkers for RA with either a cold or a hot pattern.Microarray technology was used to reveal gene expression profiles in CD4(+) T cells from 21 RA patients with cold pattern and 12 with hot pattern. A T-test was used to identify significant differences in gene expression among RA patients with either cold or hot pattern. Cytoscape software was used to search the existing literature and databases for protein-protein interaction information for genes of interest that were identified from this analysis. The IPCA algorithm was used to detect highly connected regions for inferring significant complexes or pathways in this protein-protein interaction network. Significant pathways and functions were extracted from these subnetworks by the Biological Network Gene Ontology tool.Four genes were expressed at higher levels in RA patients with cold pattern than in patients with hot pattern, and 21 genes had lower levels of expression. Protein-protein interaction network analysis for these genes showed that there were four highly connected regions. The most relevant functions and pathways extracted from these subnetwork regions were involved in small G protein signaling pathways, oxidation-reduction in fatty acid metabolism and T cell proliferation.Complicated network based pathways appear to play a role in the different pattern manifestations in patients with RA, and our results suggest that network-based pathways might be the scientific basis for TCM pattern classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wtg完成签到,获得积分10
刚刚
在水一方应助Sheila采纳,获得10
1秒前
英姑应助YE采纳,获得30
1秒前
ysl发布了新的文献求助30
1秒前
1秒前
cilan完成签到 ,获得积分10
4秒前
义气的妙松完成签到,获得积分10
4秒前
yangjing发布了新的文献求助10
5秒前
rosexu发布了新的文献求助10
5秒前
盘尼西林发布了新的文献求助10
6秒前
科研通AI2S应助我是125采纳,获得10
6秒前
李健的小迷弟应助arkamar采纳,获得10
7秒前
Xiaoxiao完成签到,获得积分10
7秒前
cilan发布了新的文献求助10
7秒前
SciGPT应助William鉴哲采纳,获得10
7秒前
8秒前
咩咩完成签到,获得积分20
9秒前
合一海盗应助wtg采纳,获得200
9秒前
9秒前
Grayball应助ccc采纳,获得10
9秒前
bkagyin应助猪猪hero采纳,获得10
10秒前
10秒前
科研通AI5应助顺利毕业采纳,获得10
11秒前
领导范儿应助spray采纳,获得30
11秒前
11秒前
长风完成签到,获得积分10
12秒前
13秒前
吴岳发布了新的文献求助10
13秒前
科研通AI2S应助我是125采纳,获得10
14秒前
涛涛完成签到,获得积分10
14秒前
轩辕德地发布了新的文献求助10
15秒前
科研通AI2S应助jidou1011采纳,获得10
15秒前
魔幻的妖丽完成签到 ,获得积分10
16秒前
黄晓杰2024完成签到,获得积分10
17秒前
枫叶完成签到,获得积分10
18秒前
18秒前
19秒前
小二郎应助虚心盼晴采纳,获得10
19秒前
俊逸的盛男完成签到 ,获得积分10
19秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808