血管生成
细胞生物学
发芽
血管内皮生长因子
萌芽血管生成
Notch信号通路
生物
转化生长因子
化学
癌症研究
血管内皮生长因子受体
新生血管
信号转导
植物
作者
Yi Jin,David Kaluza,Lars Jakobsson
出处
期刊:Biochemical Society Transactions
[Portland Press]
日期:2014-11-17
卷期号:42 (6): 1576-1583
被引量:52
摘要
The blood vasculature is constantly adapting to meet the demand from tissue. In so doing, branches may form, reorganize or regress. These complex processes employ integration of multiple signalling cascades, some of them being restricted to endothelial and mural cells and, hence, suitable for targeting of the vasculature. Both genetic and drug targeting experiments have demonstrated the requirement for the vascular endothelial growth factor (VEGF) system, the Delta-like–Notch system and the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) cascades in vascular development. Although several of these signalling cascades in part converge into common downstream components, they differ in temporal and spatial regulation and expression. For example, the pro-angiogenic VEGFA is secreted by cells in need of oxygen, presented to the basal side of the endothelium, whereas BMP9 and BMP10 are supplied via the bloodstream in constant interaction with the apical side to suppress angiogenesis. Delta-like 4 (DLL4), on the other hand, is provided as an endothelial membrane bound ligand. In the present article, we discuss recent data on the integration of these pathways in the process of sprouting angiogenesis and vascular patterning and malformation.
科研通智能强力驱动
Strongly Powered by AbleSci AI