Insulin structure and function

化学 胰岛素 计算生物学 半合成 血糖性 功能(生物学) 药理学 医学 生物化学 生物 生物技术 细胞生物学
作者
John P. Mayer,Faming Zhang,Richard D. DiMarchi
出处
期刊:Biopolymers [Wiley]
卷期号:88 (5): 687-713 被引量:217
标识
DOI:10.1002/bip.20734
摘要

Abstract Throughout much of the last century insulin served a central role in the advancement of peptide chemistry, pharmacology, cell signaling and structural biology. These discoveries have provided a steadily improved quantity and quality of life for those afflicted with diabetes. The collective work serves as a foundation for the development of insulin analogs and mimetics capable of providing more tailored therapy. Advancements in patient care have been paced by breakthroughs in core technologies, such as semisynthesis, high performance chromatography, rDNA‐biosynthesis and formulation sciences. How the structural and conformational dynamics of this endocrine hormone elicit its biological response remains a vigorous area of study. Numerous insulin analogs have served to coordinate structural biology and biochemical signaling to provide a first level understanding of insulin action. The introduction of broad chemical diversity to the study of insulin has been limited by the inefficiency in total chemical synthesis, and the inherent limitations in rDNA‐biosynthesis and semisynthetic approaches. The goals of continued investigation remain the delivery of insulin therapy where glycemic control is more precise and hypoglycemic liability is minimized. Additional objectives for medicinal chemists are the identification of superagonists and insulins more suitable for non‐injectable delivery. The historical advancements in the synthesis of insulin analogs by multiple methods is reviewed with the specific structural elements of critical importance being highlighted. The functional refinement of this hormone as directed to improved patient care with insulin analogs of more precise pharmacology is reported. © 2007 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 88: 687–713, 2007. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助Justtry采纳,获得10
1秒前
Hbobo发布了新的文献求助10
2秒前
香蕉觅云应助格子采纳,获得10
2秒前
光亮的初曼完成签到,获得积分20
2秒前
lovelife完成签到,获得积分10
3秒前
三徙教完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Y123456完成签到,获得积分10
4秒前
4秒前
jojo发布了新的文献求助10
4秒前
小也发布了新的文献求助20
4秒前
小西完成签到 ,获得积分10
5秒前
善学以致用应助Buster采纳,获得10
5秒前
科研通AI5应助科研达人采纳,获得10
6秒前
wenge完成签到,获得积分20
6秒前
yangyang完成签到,获得积分10
6秒前
7秒前
Yoin发布了新的文献求助10
7秒前
Jasper应助中中采纳,获得30
8秒前
JamesPei应助笑点低剑鬼采纳,获得10
8秒前
我是老大应助huanhuan采纳,获得10
8秒前
是我呀小夏完成签到 ,获得积分10
9秒前
白野凛发布了新的文献求助10
10秒前
10秒前
打打应助maxSpr采纳,获得10
10秒前
11秒前
HQJ发布了新的文献求助10
12秒前
爱吃狗答辩完成签到,获得积分10
13秒前
13秒前
充电宝应助Buster采纳,获得10
13秒前
乐观的水桃完成签到,获得积分10
13秒前
luqiqi完成签到,获得积分20
13秒前
14秒前
MoGong应助诚心的芸遥采纳,获得10
14秒前
sodawater完成签到,获得积分10
14秒前
14秒前
慕青应助caoyy采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267