硒
细胞毒性
GPX1型
化学
谷胱甘肽
谷胱甘肽过氧化物酶
癌细胞
生物化学
癌症研究
癌症
生物
酶
体外
有机化学
遗传学
作者
Yulei Wang,Wenfeng Fang,Ying Huang,Fen Hu,Qi Ying,Wancai Yang,Bin Xiong
标识
DOI:10.1016/j.freeradbiomed.2014.11.015
摘要
Selenium is an essential trace element and has been extensively studied for preventive effects on cancers. Recent emerging evidence has also shown that selenium at supranutritional dosage has a preferential cytotoxicity in cancer cells and chemotherapeutic drug-resistant cells, but the underlying mechanisms remain largely unknown. This study was to investigate the roles of two distinct representatives of selenium-containing proteins, selenium-binding protein 1 (SBP1) and glutathione peroxidase 1 (GPX1), in selenite-mediated cancer-specific cytotoxicity. We found that there was a significantly inverse correlation between SBP1 and GPX1 protein level in human breast cancers and adjacent matched nontumor tissues (Pearson r=–0.4347, P=0.0338). Ectopic expression of GPX1 enhanced selenite cytotoxicity through down-regulation of SBP1, and SBP1 was likely to be a crucial determinant for selenite-mediated cytotoxicity. Reduction of SBP1 in cancer cells and epirubicin-resistant cells on selenite exposure resulted in a dramatic increase in the generation of hydrogen peroxide and superoxide anion, which in turn caused oxidative stress and triggered apoptosis. Furthermore, knockdown SBP1 by small interfering RNA increased selenite sensitivity by elevating extracellular glutathione (GSH), which spontaneously reacted with selenite and led to the rapid depletion of selenium (IV) in growth medium and the high-affinity uptake of selenite. In conclusion, these findings would improve our understanding of the roles of selenium-containing proteins in selenite-mediated cytotoxicity, and revealed a potent mechanism of the selective cytotoxicity of selenite in cancer cells and drug-resistant cells, in which SBP1 was likely to play an important role in modulating the extracellular microenvironment by regulating the levels of extracellular GSH.
科研通智能强力驱动
Strongly Powered by AbleSci AI