Identifying careless responses in survey data.

一致性(知识库) 离群值 数据收集 数据质量 勤奋 心理学 多元分析 多元统计 质量(理念) 测量数据收集 计算机科学 统计 社会心理学 人工智能 数学 机器学习 公制(单位) 哲学 运营管理 认识论 经济
作者
Adam W. Meade,S. Bartholomew Craig
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:17 (3): 437-455 被引量:3200
标识
DOI:10.1037/a0028085
摘要

When data are collected via anonymous Internet surveys, particularly under conditions of obligatory participation (such as with student samples), data quality can be a concern. However, little guidance exists in the published literature regarding techniques for detecting careless responses. Previously several potential approaches have been suggested for identifying careless respondents via indices computed from the data, yet almost no prior work has examined the relationships among these indicators or the types of data patterns identified by each. In 2 studies, we examined several methods for identifying careless responses, including (a) special items designed to detect careless response, (b) response consistency indices formed from responses to typical survey items, (c) multivariate outlier analysis, (d) response time, and (e) self-reported diligence. Results indicated that there are two distinct patterns of careless response (random and nonrandom) and that different indices are needed to identify these different response patterns. We also found that approximately 10%-12% of undergraduates completing a lengthy survey for course credit were identified as careless responders. In Study 2, we simulated data with known random response patterns to determine the efficacy of several indicators of careless response. We found that the nature of the data strongly influenced the efficacy of the indices to identify careless responses. Recommendations include using identified rather than anonymous responses, incorporating instructed response items before data collection, as well as computing consistency indices and multivariate outlier analysis to ensure high-quality data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CipherSage应助141592采纳,获得10
1秒前
sjr完成签到,获得积分10
1秒前
1秒前
SciGPT应助秋吉儿采纳,获得10
1秒前
陪小凯许个愿完成签到,获得积分10
1秒前
1秒前
晚灯君完成签到 ,获得积分0
2秒前
Lee发布了新的文献求助10
2秒前
2秒前
3秒前
呋喃发布了新的文献求助10
3秒前
3秒前
852应助根深者叶茂采纳,获得10
3秒前
Leixn完成签到,获得积分10
4秒前
4秒前
5秒前
sjr发布了新的文献求助10
5秒前
5秒前
Akim应助www采纳,获得10
5秒前
5秒前
Ramanujan完成签到,获得积分10
5秒前
李爱国应助105度余温采纳,获得10
5秒前
6秒前
白马非马完成签到,获得积分10
6秒前
怕孤独的问芙完成签到 ,获得积分10
6秒前
韩大王发布了新的文献求助10
6秒前
壮观梦之完成签到,获得积分10
7秒前
7秒前
丘比特应助阮科采纳,获得10
7秒前
妖怪大大发布了新的文献求助10
7秒前
风华发布了新的文献求助10
7秒前
二二春发布了新的文献求助10
8秒前
搜集达人应助小小鱼采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
8秒前
华仔应助xiaoexiaoe采纳,获得10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645776
求助须知:如何正确求助?哪些是违规求助? 4769743
关于积分的说明 15032036
捐赠科研通 4804514
什么是DOI,文献DOI怎么找? 2569056
邀请新用户注册赠送积分活动 1526123
关于科研通互助平台的介绍 1485700