Identifying careless responses in survey data.

一致性(知识库) 离群值 数据收集 数据质量 勤奋 心理学 多元分析 多元统计 质量(理念) 测量数据收集 计算机科学 统计 社会心理学 人工智能 数学 机器学习 公制(单位) 经济 哲学 认识论 运营管理
作者
Adam W. Meade,S. Bartholomew Craig
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:17 (3): 437-455 被引量:3088
标识
DOI:10.1037/a0028085
摘要

When data are collected via anonymous Internet surveys, particularly under conditions of obligatory participation (such as with student samples), data quality can be a concern. However, little guidance exists in the published literature regarding techniques for detecting careless responses. Previously several potential approaches have been suggested for identifying careless respondents via indices computed from the data, yet almost no prior work has examined the relationships among these indicators or the types of data patterns identified by each. In 2 studies, we examined several methods for identifying careless responses, including (a) special items designed to detect careless response, (b) response consistency indices formed from responses to typical survey items, (c) multivariate outlier analysis, (d) response time, and (e) self-reported diligence. Results indicated that there are two distinct patterns of careless response (random and nonrandom) and that different indices are needed to identify these different response patterns. We also found that approximately 10%-12% of undergraduates completing a lengthy survey for course credit were identified as careless responders. In Study 2, we simulated data with known random response patterns to determine the efficacy of several indicators of careless response. We found that the nature of the data strongly influenced the efficacy of the indices to identify careless responses. Recommendations include using identified rather than anonymous responses, incorporating instructed response items before data collection, as well as computing consistency indices and multivariate outlier analysis to ensure high-quality data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
川川发布了新的文献求助10
1秒前
脑洞疼应助你真是那个啊采纳,获得10
1秒前
怕孤单的安蕾完成签到,获得积分10
2秒前
余晓雨完成签到,获得积分10
2秒前
王艳发布了新的文献求助10
4秒前
4秒前
HuY完成签到 ,获得积分10
4秒前
加贝发布了新的文献求助10
5秒前
F_echo发布了新的文献求助10
5秒前
Sir.夏季风完成签到,获得积分10
5秒前
6秒前
李照普发布了新的文献求助10
6秒前
6秒前
三脉紫莞关注了科研通微信公众号
7秒前
7秒前
照相机完成签到,获得积分10
8秒前
8秒前
8秒前
Annn完成签到 ,获得积分10
8秒前
9秒前
挽手余生发布了新的文献求助10
10秒前
11秒前
yszve完成签到,获得积分10
12秒前
13秒前
Cao完成签到 ,获得积分10
14秒前
14秒前
14秒前
张彩红完成签到,获得积分10
16秒前
16秒前
lixudong完成签到,获得积分10
17秒前
可爱的函函应助22222采纳,获得10
17秒前
赘婿应助叶素绿采纳,获得10
18秒前
自己哭哭完成签到 ,获得积分10
18秒前
123完成签到 ,获得积分10
18秒前
19秒前
小二郎应助clean采纳,获得50
19秒前
工科小白求学路完成签到,获得积分10
19秒前
19秒前
anhchi发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263186
求助须知:如何正确求助?哪些是违规求助? 4423851
关于积分的说明 13770951
捐赠科研通 4298749
什么是DOI,文献DOI怎么找? 2358664
邀请新用户注册赠送积分活动 1354904
关于科研通互助平台的介绍 1316172