Identifying careless responses in survey data.

一致性(知识库) 离群值 数据收集 数据质量 勤奋 心理学 多元分析 多元统计 质量(理念) 测量数据收集 计算机科学 统计 社会心理学 人工智能 数学 机器学习 公制(单位) 经济 哲学 认识论 运营管理
作者
Adam W. Meade,S. Bartholomew Craig
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:17 (3): 437-455 被引量:2818
标识
DOI:10.1037/a0028085
摘要

When data are collected via anonymous Internet surveys, particularly under conditions of obligatory participation (such as with student samples), data quality can be a concern. However, little guidance exists in the published literature regarding techniques for detecting careless responses. Previously several potential approaches have been suggested for identifying careless respondents via indices computed from the data, yet almost no prior work has examined the relationships among these indicators or the types of data patterns identified by each. In 2 studies, we examined several methods for identifying careless responses, including (a) special items designed to detect careless response, (b) response consistency indices formed from responses to typical survey items, (c) multivariate outlier analysis, (d) response time, and (e) self-reported diligence. Results indicated that there are two distinct patterns of careless response (random and nonrandom) and that different indices are needed to identify these different response patterns. We also found that approximately 10%-12% of undergraduates completing a lengthy survey for course credit were identified as careless responders. In Study 2, we simulated data with known random response patterns to determine the efficacy of several indicators of careless response. We found that the nature of the data strongly influenced the efficacy of the indices to identify careless responses. Recommendations include using identified rather than anonymous responses, incorporating instructed response items before data collection, as well as computing consistency indices and multivariate outlier analysis to ensure high-quality data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hpp发布了新的文献求助10
1秒前
songlf23发布了新的文献求助30
1秒前
荷包蛋完成签到,获得积分10
2秒前
爆米花应助博修采纳,获得30
3秒前
巴纳拉完成签到,获得积分10
4秒前
阿元完成签到,获得积分10
4秒前
大气糖豆完成签到,获得积分10
5秒前
psycho完成签到,获得积分10
5秒前
6秒前
lidifei发布了新的文献求助10
7秒前
HM发布了新的文献求助10
8秒前
地表飞猪应助如意一斩采纳,获得10
8秒前
YF完成签到,获得积分10
8秒前
9秒前
想吃小面包完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Walden完成签到,获得积分10
10秒前
阳光友蕊完成签到 ,获得积分10
10秒前
慕青应助果实采纳,获得10
11秒前
年轻乐巧完成签到,获得积分10
11秒前
11秒前
11秒前
南北完成签到,获得积分10
12秒前
深情芷发布了新的文献求助10
13秒前
orixero应助萝卜采纳,获得10
14秒前
4477发布了新的文献求助10
15秒前
大模型应助分析采纳,获得10
16秒前
17秒前
17秒前
17秒前
怡然的怀莲完成签到 ,获得积分20
18秒前
刘向洋发布了新的文献求助10
19秒前
lidifei完成签到,获得积分10
21秒前
22秒前
Melody发布了新的文献求助10
22秒前
大气糖豆发布了新的文献求助10
22秒前
Joker完成签到,获得积分10
23秒前
认真的雪完成签到,获得积分10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150