Resolving the structure of inner ear ribbon synapses with STED microscopy

扫描电镜 带状突触 突触小泡 突触后电位 神经科学 突触 神经传递 生物物理学 突触后密度 化学
作者
Mark A. Rutherford
出处
期刊:Synapse [Wiley]
卷期号:69 (5): 242-255 被引量:22
标识
DOI:10.1002/syn.21812
摘要

Synapses are diverse in form and function; however, the mechanisms underlying this diversity are poorly understood. To illuminate structure/function relationships, robust analysis of molecular composition and morphology is needed. The molecular-anatomical components of synapses-vesicles, clusters of voltage-gated ion channels in presynaptic densities, arrays of transmitter receptors in postsynaptic densities-are only tens to hundreds of nanometers in size. Measuring the topographies of synaptic proteins requires nanoscale resolution of their molecularly specific labels. Super-resolution light microscopy has emerged to meet this need. Achieving 50 nm resolution in thick tissue, we employed stimulated emission depletion (STED) microscopy to image the functionally and molecularly unique ribbon-type synapses in the inner ear that connect mechano-sensory inner hair cells to cochlear nerve fibers. Synaptic ribbons, bassoon protein, voltage-gated Ca(2+) channels, and glutamate receptors are inhomogeneous in their spatial distributions within synapses; the protein clusters assume variations of shapes typical for each protein specifically at cochlear afferent synapses. Heterogeneity of substructure among these synapses may contribute to functional differences among auditory nerve fibers. The morphology of synaptic voltage-gated Ca(2+) channels matures over development in a way that depends upon bassoon protein, which aggregates in similar form. Functional properties of synaptic transmission appear to depend on voltage-gated Ca(2+) channel cluster morphology and position relative to synaptic vesicles. Super-resolution light microscopy is a group of techniques that complement electron microscopy and conventional light microscopy. Although technical hurdles remain, we are beginning to resolve the details of molecular nanoanatomy that relate mechanistically to synaptic function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助jimskylxk采纳,获得10
1秒前
袁妞妞发布了新的文献求助10
1秒前
2秒前
陈功发布了新的文献求助10
2秒前
3秒前
jd发布了新的文献求助10
3秒前
吾身无拘发布了新的文献求助10
4秒前
CC完成签到 ,获得积分10
4秒前
蔡问钰完成签到,获得积分20
5秒前
东欢乐完成签到,获得积分20
5秒前
今后应助袁妞妞采纳,获得10
5秒前
拙青发布了新的文献求助10
5秒前
科研通AI2S应助威武的板凳采纳,获得10
5秒前
5秒前
NPC完成签到,获得积分0
7秒前
上官若男应助张天翔采纳,获得10
8秒前
9秒前
9秒前
元夕阑珊发布了新的文献求助10
9秒前
angan发布了新的文献求助10
10秒前
紫藤完成签到,获得积分10
10秒前
快乐滑板应助JiahaoRao采纳,获得10
11秒前
周同学发布了新的文献求助10
11秒前
ohh发布了新的文献求助10
13秒前
小硕完成签到,获得积分10
13秒前
ZHX完成签到 ,获得积分10
13秒前
13秒前
zhouchen发布了新的文献求助10
16秒前
17秒前
大模型应助123采纳,获得10
18秒前
可爱的函函应助青鸢采纳,获得10
18秒前
jd完成签到,获得积分20
19秒前
科研通AI2S应助林大壮采纳,获得10
21秒前
收入股完成签到,获得积分10
22秒前
Yimi发布了新的文献求助10
22秒前
雨碎寒江完成签到,获得积分10
23秒前
科目三应助J-wwwww采纳,获得10
26秒前
愿喜完成签到,获得积分20
27秒前
无花果应助难过的尔冬采纳,获得10
30秒前
愿喜发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112