亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Advanced Machine-Learning Techniques for Noninvasive Monitoring of Hemorrhage

失代偿 血流动力学 生命体征 休克(循环) 医学 血容量 血压 重症监护医学 心脏病学 麻醉 内科学
作者
Víctor A. Convertino,Steven L. Moulton,Gregory Z. Grudić,Caroline A. Rickards,Carmen Hinojosa‐Laborde,Robert T. Gerhardt,Lorne H. Blackbourne,Kathy L. Ryan
出处
期刊:Journal of Trauma-injury Infection and Critical Care [Ovid Technologies (Wolters Kluwer)]
卷期号:71 (1): S25-S32 被引量:110
标识
DOI:10.1097/ta.0b013e3182211601
摘要

Hemorrhagic shock is a leading cause of death in both civilian and battlefield trauma. Currently available medical monitors provide measures of standard vital signs that are insensitive and nonspecific. More important, hypotension and other signs and symptoms of shock can appear when it may be too late to apply effective life-saving interventions. The resulting challenge is that early diagnosis is difficult because hemorrhagic shock is first recognized by late-responding vital signs and symptoms. The purpose of these experiments was to test the hypothesis that state-of-the-art machine-learning techniques, when integrated with novel non-invasive monitoring technologies, could detect early indicators of blood volume loss and impending circulatory failure in conscious, healthy humans who experience reduced central blood volume.Humans were exposed to progressive reductions in central blood volume using lower body negative pressure as a model of hemorrhage until the onset of hemodynamic decompensation. Continuous, noninvasively measured hemodynamic signals were used for the development of machine-learning algorithms. Accuracy estimates were obtained by building models using signals from all but one subject and testing on that subject. This process was repeated, each time using a different subject.The model was 96.5% accurate in predicting the estimated amount of reduced central blood volume, and the correlation between predicted and actual lower body negative pressure level for hemodynamic decompensation was 0.89.Machine modeling can accurately identify reduced central blood volume and predict impending hemodynamic decompensation (shock onset) in individuals. Such a capability can provide decision support for earlier intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
1分钟前
1分钟前
1分钟前
1分钟前
乐洋洋发布了新的文献求助10
1分钟前
1分钟前
hank完成签到,获得积分10
1分钟前
sirius应助科研通管家采纳,获得10
2分钟前
LPH01发布了新的文献求助10
2分钟前
机智明辉完成签到,获得积分10
2分钟前
2分钟前
不安映秋发布了新的文献求助10
2分钟前
小将军完成签到,获得积分10
2分钟前
2分钟前
2分钟前
..发布了新的文献求助10
3分钟前
柏莉发布了新的文献求助10
3分钟前
Yaon-Xu完成签到,获得积分10
3分钟前
3分钟前
YUYUYU发布了新的文献求助10
3分钟前
3分钟前
充电宝应助Anna Jenna采纳,获得10
3分钟前
3分钟前
Anna Jenna发布了新的文献求助10
3分钟前
爆米花应助Anna Jenna采纳,获得10
4分钟前
薇笑不慌完成签到,获得积分10
4分钟前
爆米花应助dd19930403采纳,获得30
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
dd19930403发布了新的文献求助30
4分钟前
tian发布了新的文献求助10
4分钟前
menglanjun完成签到,获得积分10
4分钟前
minuxSCI完成签到,获得积分10
4分钟前
dd19930403完成签到 ,获得积分20
4分钟前
Benhnhk21完成签到,获得积分10
5分钟前
所所应助想昵称太难了采纳,获得10
5分钟前
球球球心完成签到,获得积分10
5分钟前
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806917
捐赠科研通 2449807
什么是DOI,文献DOI怎么找? 1303487
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314