Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function

计算机科学 模因算法 可解释性 模糊规则 适应度函数 模糊逻辑 人工智能 机器学习 分类器(UML) 数据挖掘 进化算法 算法 模糊集 遗传算法
作者
A. Zibakhsh,Mohammad Saniee Abadeh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:26 (4): 1274-1281 被引量:47
标识
DOI:10.1016/j.engappai.2012.12.009
摘要

Cancer is one of the key research topics in the medical field. An accurate detection of different cancer tumor types has great value in providing better treatment facilities and risk minimization for patients. Recently, DNA microarray-based gene expression profiles have been employed to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and benign tumors. An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several well-known and frequently used techniques for designing classifiers from microarray data, such as a support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low comprehensibility. This paper proposes a new memetic algorithm which is capable of extracting interpretable and accurate fuzzy if–then rules from cancer data. This paper is the first proposal of memetic algorithms with the Multi-View fitness function approach. The new presented Multi-View fitness function considers two kinds of evaluating procedures. The first procedure, which is located in the main evolutionary structure of the algorithm, evaluates each single fuzzy if–then rule according to the specified rule quality (the evaluating procedure does not consider other rules). However, the second procedure determines the quality of each fuzzy rule according to the whole fuzzy rule set performance. In comparison to classic memetic algorithms, these kinds of memetic algorithms enhance the rule discovery process significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stuffmatter发布了新的文献求助200
刚刚
小呆发布了新的文献求助10
刚刚
2秒前
Lucas应助浅渊采纳,获得10
2秒前
Even_YE完成签到,获得积分10
2秒前
2秒前
爆米花应助瘦瘦绮采纳,获得10
3秒前
111发布了新的文献求助10
3秒前
3秒前
沐沐发布了新的文献求助20
4秒前
浮游应助Lala采纳,获得10
4秒前
SciGPT应助hhh采纳,获得10
4秒前
高帅帅完成签到,获得积分10
4秒前
慕青应助曲凯采纳,获得10
4秒前
科研通AI5应助Jun2025采纳,获得10
4秒前
5秒前
6秒前
7秒前
十三完成签到,获得积分10
7秒前
饱饱完成签到,获得积分10
8秒前
俭朴的皮卡丘完成签到 ,获得积分10
8秒前
cyan发布了新的文献求助30
8秒前
着急的青枫应助ANXU采纳,获得10
9秒前
Ava应助LlLly采纳,获得10
9秒前
赘婿应助寒冷的断秋采纳,获得10
9秒前
张迪发布了新的文献求助10
10秒前
Herman完成签到 ,获得积分10
10秒前
10秒前
小青椒应助Aliez采纳,获得50
10秒前
饱饱发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
贺知什么书完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
MM完成签到,获得积分10
14秒前
14秒前
浮游应助柚柚子采纳,获得10
14秒前
852应助零食宝采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905784
求助须知:如何正确求助?哪些是违规求助? 4183599
关于积分的说明 12990865
捐赠科研通 3949812
什么是DOI,文献DOI怎么找? 2166128
邀请新用户注册赠送积分活动 1184660
关于科研通互助平台的介绍 1090941