Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function

计算机科学 模因算法 可解释性 模糊规则 适应度函数 模糊逻辑 人工智能 机器学习 分类器(UML) 数据挖掘 进化算法 算法 模糊集 遗传算法
作者
A. Zibakhsh,Mohammad Saniee Abadeh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:26 (4): 1274-1281 被引量:47
标识
DOI:10.1016/j.engappai.2012.12.009
摘要

Cancer is one of the key research topics in the medical field. An accurate detection of different cancer tumor types has great value in providing better treatment facilities and risk minimization for patients. Recently, DNA microarray-based gene expression profiles have been employed to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and benign tumors. An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several well-known and frequently used techniques for designing classifiers from microarray data, such as a support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low comprehensibility. This paper proposes a new memetic algorithm which is capable of extracting interpretable and accurate fuzzy if–then rules from cancer data. This paper is the first proposal of memetic algorithms with the Multi-View fitness function approach. The new presented Multi-View fitness function considers two kinds of evaluating procedures. The first procedure, which is located in the main evolutionary structure of the algorithm, evaluates each single fuzzy if–then rule according to the specified rule quality (the evaluating procedure does not consider other rules). However, the second procedure determines the quality of each fuzzy rule according to the whole fuzzy rule set performance. In comparison to classic memetic algorithms, these kinds of memetic algorithms enhance the rule discovery process significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华123完成签到,获得积分20
1秒前
xunmacaoyan完成签到,获得积分10
1秒前
2秒前
举个西瓜完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
LinHan发布了新的文献求助10
4秒前
秋风来临之时完成签到 ,获得积分10
5秒前
5秒前
Hello应助Rui采纳,获得100
5秒前
小木子发布了新的文献求助10
6秒前
6秒前
6秒前
SciGPT应助xibei采纳,获得10
6秒前
7秒前
小二郎应助科研通管家采纳,获得20
7秒前
xubobo发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得50
8秒前
qingmoheng应助科研通管家采纳,获得10
8秒前
NGU发布了新的文献求助10
8秒前
wxyshare应助科研通管家采纳,获得10
8秒前
Zyc完成签到,获得积分10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
iNk应助早睡采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
wxyshare应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582