Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function

计算机科学 模因算法 可解释性 模糊规则 适应度函数 模糊逻辑 人工智能 机器学习 分类器(UML) 数据挖掘 进化算法 算法 模糊集 遗传算法
作者
A. Zibakhsh,Mohammad Saniee Abadeh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:26 (4): 1274-1281 被引量:47
标识
DOI:10.1016/j.engappai.2012.12.009
摘要

Cancer is one of the key research topics in the medical field. An accurate detection of different cancer tumor types has great value in providing better treatment facilities and risk minimization for patients. Recently, DNA microarray-based gene expression profiles have been employed to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and benign tumors. An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several well-known and frequently used techniques for designing classifiers from microarray data, such as a support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low comprehensibility. This paper proposes a new memetic algorithm which is capable of extracting interpretable and accurate fuzzy if–then rules from cancer data. This paper is the first proposal of memetic algorithms with the Multi-View fitness function approach. The new presented Multi-View fitness function considers two kinds of evaluating procedures. The first procedure, which is located in the main evolutionary structure of the algorithm, evaluates each single fuzzy if–then rule according to the specified rule quality (the evaluating procedure does not consider other rules). However, the second procedure determines the quality of each fuzzy rule according to the whole fuzzy rule set performance. In comparison to classic memetic algorithms, these kinds of memetic algorithms enhance the rule discovery process significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助新八采纳,获得10
1秒前
薛枏发布了新的文献求助20
3秒前
3秒前
謓言发布了新的文献求助10
4秒前
7秒前
yinyin发布了新的文献求助30
7秒前
爆米花应助尊敬的夏槐采纳,获得10
9秒前
高大zj完成签到,获得积分20
9秒前
跳跃聪健完成签到,获得积分10
10秒前
02完成签到,获得积分10
11秒前
謓言完成签到,获得积分10
12秒前
12秒前
18秒前
orixero应助Me采纳,获得10
18秒前
19秒前
共享精神应助好好采纳,获得10
20秒前
gaochi完成签到,获得积分10
22秒前
超级的赛亚人完成签到,获得积分10
23秒前
守夜人完成签到,获得积分10
23秒前
在水一方应助Michaelfall采纳,获得10
25秒前
华康发布了新的文献求助10
26秒前
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
梵星应助科研通管家采纳,获得20
30秒前
30秒前
赘婿应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
30秒前
薛枏完成签到,获得积分10
30秒前
共享精神应助不会下文献采纳,获得80
31秒前
Yangyang完成签到,获得积分0
32秒前
毛毛完成签到,获得积分10
34秒前
wdd发布了新的文献求助10
34秒前
雨天完成签到,获得积分10
34秒前
好好完成签到,获得积分20
34秒前
传奇3应助Creamai采纳,获得10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012