亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function

计算机科学 模因算法 可解释性 模糊规则 适应度函数 模糊逻辑 人工智能 机器学习 分类器(UML) 数据挖掘 进化算法 算法 模糊集 遗传算法
作者
A. Zibakhsh,Mohammad Saniee Abadeh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:26 (4): 1274-1281 被引量:47
标识
DOI:10.1016/j.engappai.2012.12.009
摘要

Cancer is one of the key research topics in the medical field. An accurate detection of different cancer tumor types has great value in providing better treatment facilities and risk minimization for patients. Recently, DNA microarray-based gene expression profiles have been employed to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and benign tumors. An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several well-known and frequently used techniques for designing classifiers from microarray data, such as a support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low comprehensibility. This paper proposes a new memetic algorithm which is capable of extracting interpretable and accurate fuzzy if–then rules from cancer data. This paper is the first proposal of memetic algorithms with the Multi-View fitness function approach. The new presented Multi-View fitness function considers two kinds of evaluating procedures. The first procedure, which is located in the main evolutionary structure of the algorithm, evaluates each single fuzzy if–then rule according to the specified rule quality (the evaluating procedure does not consider other rules). However, the second procedure determines the quality of each fuzzy rule according to the whole fuzzy rule set performance. In comparison to classic memetic algorithms, these kinds of memetic algorithms enhance the rule discovery process significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
kei发布了新的文献求助10
3秒前
8秒前
不安听露完成签到 ,获得积分10
10秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
13秒前
feifei0729完成签到,获得积分20
15秒前
momi发布了新的文献求助10
15秒前
养乐多敬你完成签到 ,获得积分10
16秒前
YJL完成签到 ,获得积分10
19秒前
20秒前
nhzz2023完成签到 ,获得积分0
22秒前
哈基米难背绿豆完成签到,获得积分20
22秒前
今后应助momi采纳,获得10
22秒前
25秒前
123456发布了新的文献求助10
26秒前
cyanpomelo完成签到,获得积分10
30秒前
教生物的杨教授完成签到,获得积分10
31秒前
31秒前
无语的巨人完成签到 ,获得积分10
35秒前
Ava应助111222333采纳,获得30
37秒前
40秒前
KY2022完成签到,获得积分10
43秒前
sadascaqwqw发布了新的文献求助10
45秒前
小秃子完成签到,获得积分10
48秒前
于yu完成签到 ,获得积分10
54秒前
54秒前
善良的灵羊完成签到 ,获得积分10
55秒前
貔貅完成签到,获得积分10
55秒前
59秒前
Criminology34举报wshyzhxxxn求助涉嫌违规
1分钟前
sxmt123456789发布了新的文献求助30
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599