Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function

计算机科学 模因算法 可解释性 模糊规则 适应度函数 模糊逻辑 人工智能 机器学习 分类器(UML) 数据挖掘 进化算法 算法 模糊集 遗传算法
作者
A. Zibakhsh,Mohammad Saniee Abadeh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:26 (4): 1274-1281 被引量:47
标识
DOI:10.1016/j.engappai.2012.12.009
摘要

Cancer is one of the key research topics in the medical field. An accurate detection of different cancer tumor types has great value in providing better treatment facilities and risk minimization for patients. Recently, DNA microarray-based gene expression profiles have been employed to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and benign tumors. An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several well-known and frequently used techniques for designing classifiers from microarray data, such as a support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low comprehensibility. This paper proposes a new memetic algorithm which is capable of extracting interpretable and accurate fuzzy if–then rules from cancer data. This paper is the first proposal of memetic algorithms with the Multi-View fitness function approach. The new presented Multi-View fitness function considers two kinds of evaluating procedures. The first procedure, which is located in the main evolutionary structure of the algorithm, evaluates each single fuzzy if–then rule according to the specified rule quality (the evaluating procedure does not consider other rules). However, the second procedure determines the quality of each fuzzy rule according to the whole fuzzy rule set performance. In comparison to classic memetic algorithms, these kinds of memetic algorithms enhance the rule discovery process significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
充电宝应助Jay采纳,获得10
3秒前
orixero应助qp采纳,获得10
5秒前
醍醐不醒完成签到 ,获得积分10
6秒前
gaberella完成签到,获得积分10
7秒前
沐晴发布了新的文献求助150
8秒前
LANER完成签到 ,获得积分10
8秒前
9秒前
xmk完成签到 ,获得积分10
10秒前
cindywu完成签到,获得积分10
10秒前
ccc发布了新的文献求助10
10秒前
12秒前
13秒前
14秒前
14秒前
Star1983发布了新的文献求助10
18秒前
18秒前
坚定馒头发布了新的文献求助10
18秒前
项绝义发布了新的文献求助200
19秒前
Supreme发布了新的文献求助10
21秒前
22秒前
22秒前
24秒前
24秒前
24秒前
26秒前
青柠发布了新的文献求助10
26秒前
nannan发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
TKTK发布了新的文献求助30
28秒前
Stroeve发布了新的文献求助20
29秒前
33秒前
34秒前
35秒前
37秒前
lelelele发布了新的文献求助10
37秒前
38秒前
ZZZ发布了新的文献求助20
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052