统计
协方差函数
协方差
样本量测定
抽样设计
采样(信号处理)
模拟退火
高斯分布
各向同性
优化设计
计算机科学
算法
数学
数学优化
人口
滤波器(信号处理)
计算机视觉
物理
人口学
量子力学
社会学
作者
Zhengyuan Zhu,Michael L. Stein
标识
DOI:10.1198/108571106x99751
摘要
We study spatial sampling design for prediction of stationary isotropic Gaussian processes with estimated parameters of the covariance function. The key issue is how to incorporate the parameter uncertainty into design criteria to correctly represent the uncertainty in prediction. Several possible design criteria are discussed that incorporate the parameter uncertainty. A simulated annealing algorithm is employed to search for the optimal design of small sample size and a two-step algorithm is proposed for moderately large sample sizes. Simulation results are presented for the Matérn class of covariance functions. An example of redesigning the air monitoring network in EPA Region 5 for monitoring sulfur dioxide is given to illustrate the possible differences our proposed design criterion can make in practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI