已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Maximizing the spread of influence through a social network

病毒式营销 计算机科学 启发式 次模集函数 中心性 贪婪算法 近似算法 集合(抽象数据类型) 启发式 节点(物理) 不断发展的网络 社交网络(社会语言学) 理论计算机科学 数学优化 人工智能 复杂网络 数学 算法 社会化媒体 万维网 工程类 组合数学 操作系统 程序设计语言 结构工程
作者
David Kempe,Jon Kleinberg,Éva Tardos
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 137-146 被引量:7091
标识
DOI:10.1145/956750.956769
摘要

Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
4秒前
7秒前
8秒前
SciGPT应助积极泽洋采纳,获得10
10秒前
霍鑫鑫发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
希望天下0贩的0应助le采纳,获得10
14秒前
香蕉觅云应助谨慎的铸海采纳,获得10
15秒前
Nancy0818发布了新的文献求助10
15秒前
深情安青应助缘何采纳,获得10
16秒前
Alps发布了新的文献求助10
16秒前
斯文败类应助ui24采纳,获得10
17秒前
17秒前
深情安青应助可乐采纳,获得10
17秒前
Akim应助xiaoxiao采纳,获得10
18秒前
20秒前
doudou完成签到 ,获得积分10
21秒前
23秒前
24秒前
所所应助heartbeat采纳,获得10
24秒前
懵懂的翠容完成签到,获得积分10
24秒前
852应助瑞瑞瑞瑞子采纳,获得10
25秒前
26秒前
包尚易发布了新的文献求助20
29秒前
彭于晏应助纯良可可豆采纳,获得10
29秒前
31秒前
科目三应助byl采纳,获得10
31秒前
32秒前
英姑应助jeep先生采纳,获得10
34秒前
35秒前
36秒前
青柠完成签到 ,获得积分10
37秒前
37秒前
852应助ma采纳,获得10
37秒前
37秒前
ccm应助时尚的灵寒采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515171
求助须知:如何正确求助?哪些是违规求助? 4608772
关于积分的说明 14513045
捐赠科研通 4545029
什么是DOI,文献DOI怎么找? 2490382
邀请新用户注册赠送积分活动 1472349
关于科研通互助平台的介绍 1444039