Maximizing the spread of influence through a social network

病毒式营销 计算机科学 启发式 次模集函数 中心性 贪婪算法 近似算法 集合(抽象数据类型) 启发式 节点(物理) 不断发展的网络 社交网络(社会语言学) 理论计算机科学 数学优化 人工智能 复杂网络 数学 算法 社会化媒体 万维网 工程类 组合数学 操作系统 程序设计语言 结构工程
作者
David Kempe,Jon Kleinberg,Éva Tardos
出处
期刊:Knowledge Discovery and Data Mining 被引量:6656
标识
DOI:10.1145/956750.956769
摘要

Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助111采纳,获得10
刚刚
此时天完成签到,获得积分10
2秒前
可靠访蕊完成签到 ,获得积分10
2秒前
周新运完成签到,获得积分10
2秒前
曲阁完成签到 ,获得积分10
2秒前
WANGs发布了新的文献求助10
2秒前
腾腾腾发布了新的文献求助10
2秒前
coco完成签到,获得积分10
2秒前
自信飞柏完成签到 ,获得积分10
2秒前
3秒前
3秒前
梦龙南舟完成签到,获得积分10
3秒前
3秒前
3秒前
南昌黑人完成签到,获得积分10
3秒前
4秒前
严锦强完成签到,获得积分10
4秒前
an完成签到,获得积分10
5秒前
0128lun完成签到,获得积分10
5秒前
6秒前
曾经如风发布了新的文献求助10
7秒前
聪明蛋完成签到,获得积分10
7秒前
三三完成签到 ,获得积分10
7秒前
jou完成签到,获得积分10
7秒前
yyy发布了新的文献求助10
7秒前
南宫清涟完成签到,获得积分10
8秒前
8秒前
fff完成签到 ,获得积分10
8秒前
123应助止山采纳,获得40
9秒前
bb完成签到,获得积分10
9秒前
隐形蛋挞发布了新的文献求助10
9秒前
10秒前
今后应助缓慢芙采纳,获得10
11秒前
李健应助肉哥采纳,获得10
11秒前
11秒前
灭亡完成签到,获得积分10
11秒前
巨人的背影完成签到,获得积分10
12秒前
12秒前
13秒前
8R60d8完成签到,获得积分0
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294740
求助须知:如何正确求助?哪些是违规求助? 2930629
关于积分的说明 8446865
捐赠科研通 2602968
什么是DOI,文献DOI怎么找? 1420801
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643500