Maximizing the spread of influence through a social network

病毒式营销 计算机科学 启发式 次模集函数 中心性 贪婪算法 近似算法 集合(抽象数据类型) 启发式 节点(物理) 不断发展的网络 社交网络(社会语言学) 理论计算机科学 数学优化 人工智能 复杂网络 数学 算法 社会化媒体 万维网 工程类 组合数学 操作系统 程序设计语言 结构工程
作者
David Kempe,Jon Kleinberg,Éva Tardos
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 137-146 被引量:7091
标识
DOI:10.1145/956750.956769
摘要

Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
akko完成签到,获得积分10
刚刚
珺珺要努力呀完成签到 ,获得积分10
2秒前
yfxf应助akko采纳,获得10
4秒前
5秒前
5秒前
顾矜应助朱加德采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
宋二庆完成签到,获得积分10
8秒前
青火完成签到,获得积分10
9秒前
zj发布了新的文献求助10
10秒前
dzjin发布了新的文献求助10
11秒前
少女情怀总是梦完成签到,获得积分10
11秒前
11秒前
12秒前
donglimuxue完成签到,获得积分10
13秒前
14秒前
14秒前
守一完成签到,获得积分10
14秒前
香蕉觅云应助袁瑞采纳,获得10
15秒前
li完成签到 ,获得积分10
16秒前
生动友容发布了新的文献求助10
17秒前
helloworld发布了新的文献求助10
17秒前
Lucas应助elizabeth339采纳,获得10
19秒前
crane完成签到,获得积分10
20秒前
20秒前
20秒前
猫猫关注了科研通微信公众号
21秒前
明理的凌旋完成签到,获得积分10
22秒前
23秒前
宋二庆发布了新的文献求助10
23秒前
Siren发布了新的文献求助10
23秒前
25秒前
bibi发布了新的文献求助10
25秒前
26秒前
猴子发布了新的文献求助10
27秒前
袁瑞完成签到,获得积分10
27秒前
汪旺完成签到 ,获得积分10
27秒前
若春关注了科研通微信公众号
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538014
求助须知:如何正确求助?哪些是违规求助? 4625297
关于积分的说明 14595495
捐赠科研通 4565819
什么是DOI,文献DOI怎么找? 2502789
邀请新用户注册赠送积分活动 1481135
关于科研通互助平台的介绍 1452360