Maximizing the spread of influence through a social network

病毒式营销 计算机科学 启发式 次模集函数 中心性 贪婪算法 近似算法 集合(抽象数据类型) 启发式 节点(物理) 不断发展的网络 社交网络(社会语言学) 理论计算机科学 数学优化 人工智能 复杂网络 数学 算法 社会化媒体 万维网 工程类 组合数学 操作系统 程序设计语言 结构工程
作者
David Kempe,Jon Kleinberg,Éva Tardos
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 137-146 被引量:7091
标识
DOI:10.1145/956750.956769
摘要

Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moon应助sun采纳,获得10
刚刚
1秒前
整齐芷文完成签到,获得积分10
1秒前
1秒前
淡定的初夏应助ldroc采纳,获得30
2秒前
2秒前
3秒前
文艺稚晴完成签到 ,获得积分10
3秒前
脑洞疼应助Bro采纳,获得10
5秒前
6秒前
小马甲应助Neu采纳,获得10
6秒前
6秒前
罗罗发布了新的文献求助50
6秒前
丘比特应助liang2508采纳,获得10
6秒前
6秒前
tony完成签到,获得积分10
7秒前
纯真如蓉发布了新的文献求助10
7秒前
7秒前
艾扎克完成签到 ,获得积分20
7秒前
无限的笑容完成签到,获得积分10
9秒前
9秒前
shuangyanli完成签到,获得积分10
10秒前
初心完成签到 ,获得积分10
11秒前
杨德帅发布了新的文献求助10
11秒前
桐桐应助water_marvel采纳,获得10
11秒前
xin发布了新的文献求助10
12秒前
xxp发布了新的文献求助30
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
FashionBoy应助拉条子采纳,获得10
14秒前
14秒前
14秒前
15秒前
liujiaying完成签到,获得积分10
15秒前
16秒前
科目三应助深情的雪糕采纳,获得10
17秒前
kds完成签到,获得积分20
17秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382390
求助须知:如何正确求助?哪些是违规求助? 4505491
关于积分的说明 14022095
捐赠科研通 4414924
什么是DOI,文献DOI怎么找? 2425245
邀请新用户注册赠送积分活动 1418035
关于科研通互助平台的介绍 1396036