亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Maximizing the spread of influence through a social network

病毒式营销 计算机科学 启发式 次模集函数 中心性 贪婪算法 近似算法 集合(抽象数据类型) 启发式 节点(物理) 不断发展的网络 社交网络(社会语言学) 理论计算机科学 数学优化 人工智能 复杂网络 数学 算法 社会化媒体 万维网 工程类 组合数学 操作系统 程序设计语言 结构工程
作者
David Kempe,Jon Kleinberg,Éva Tardos
出处
期刊:Knowledge Discovery and Data Mining 被引量:6656
标识
DOI:10.1145/956750.956769
摘要

Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
YUN关注了科研通微信公众号
7秒前
方金龙完成签到,获得积分20
15秒前
30秒前
cc完成签到 ,获得积分10
31秒前
YUN发布了新的文献求助10
35秒前
42秒前
自信号厂完成签到 ,获得积分0
46秒前
许三问完成签到 ,获得积分0
46秒前
刘坤选发布了新的文献求助10
47秒前
领导范儿应助科研通管家采纳,获得10
47秒前
丁浩伦应助科研通管家采纳,获得10
47秒前
研友_VZG7GZ应助科研通管家采纳,获得10
47秒前
酷波er应助YUN采纳,获得30
52秒前
1分钟前
hulahula完成签到 ,获得积分10
1分钟前
呼啦呼啦完成签到 ,获得积分10
1分钟前
1分钟前
Rui完成签到 ,获得积分10
1分钟前
英俊的铭应助骆十八采纳,获得30
1分钟前
1分钟前
1分钟前
开霁完成签到 ,获得积分10
1分钟前
1分钟前
杏仁核发布了新的文献求助10
2分钟前
2分钟前
衣裳薄完成签到,获得积分10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
Hello应助yifei采纳,获得10
2分钟前
谷雨完成签到 ,获得积分20
2分钟前
谷雨关注了科研通微信公众号
2分钟前
丁浩伦应助科研通管家采纳,获得10
2分钟前
weske完成签到 ,获得积分10
2分钟前
无花果应助干净南风采纳,获得10
2分钟前
momomomo完成签到,获得积分10
3分钟前
3分钟前
搜集达人应助牟青采纳,获得10
3分钟前
yifei发布了新的文献求助10
3分钟前
朱宣诚发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581720
求助须知:如何正确求助?哪些是违规求助? 3999594
关于积分的说明 12381455
捐赠科研通 3674322
什么是DOI,文献DOI怎么找? 2024907
邀请新用户注册赠送积分活动 1058770
科研通“疑难数据库(出版商)”最低求助积分说明 945556