Maximizing the spread of influence through a social network

病毒式营销 计算机科学 启发式 次模集函数 中心性 贪婪算法 近似算法 集合(抽象数据类型) 启发式 节点(物理) 不断发展的网络 社交网络(社会语言学) 理论计算机科学 数学优化 人工智能 复杂网络 数学 算法 社会化媒体 万维网 工程类 组合数学 操作系统 程序设计语言 结构工程
作者
David Kempe,Jon Kleinberg,Éva Tardos
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 137-146 被引量:7091
标识
DOI:10.1145/956750.956769
摘要

Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦娜完成签到,获得积分10
刚刚
wz完成签到,获得积分10
1秒前
2秒前
bkagyin应助不喜采纳,获得10
3秒前
完美世界应助Alces采纳,获得10
6秒前
务实大雁完成签到,获得积分10
6秒前
6秒前
帅气小刺猬完成签到,获得积分10
6秒前
YE发布了新的文献求助10
7秒前
汤柏钧完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
yznfly应助kento采纳,获得50
9秒前
学术糕手完成签到,获得积分10
9秒前
苏梗完成签到 ,获得积分10
10秒前
10秒前
10秒前
1394980266完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
ee发布了新的文献求助10
11秒前
李健应助英俊小鼠采纳,获得10
11秒前
Eig发布了新的文献求助200
12秒前
CipherSage应助包容笑蓝采纳,获得10
13秒前
徐凤年完成签到,获得积分20
13秒前
兜有米完成签到,获得积分10
14秒前
Syx_rcees发布了新的文献求助10
15秒前
15秒前
hug沅沅发布了新的文献求助10
15秒前
不喜发布了新的文献求助10
16秒前
16秒前
孤独的ming发布了新的文献求助10
16秒前
17秒前
蓝天发布了新的文献求助10
17秒前
兰天发布了新的文献求助30
17秒前
17秒前
深情的秋白完成签到 ,获得积分10
18秒前
wanwusheng完成签到,获得积分10
18秒前
英俊的铭应助Syx_rcees采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798