Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst

材料科学 X射线光电子能谱 光催化 光致发光 打赌理论 纳米片 罗丹明B 可见光谱 拉曼光谱 光电流 纳米颗粒 氧气 比表面积 化学工程 空位缺陷 光电子学 光化学 纳米技术 催化作用 化学 光学 结晶学 生物化学 物理 有机化学 工程类
作者
Jing Wang,Yi Xia,Yan Dong,Ruosong Chen,Lan Xiang,Sridhar Komarneni
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:192: 8-16 被引量:252
标识
DOI:10.1016/j.apcatb.2016.03.040
摘要

A facile ultra-rapid solution method was developed to fabricate ZnO nanosheets with tunable BET surface area and rich oxygen-vacancy defects. The addition of 1 mol L−1 Na2SO4 led to an increase of BET surface area of ZnO nanosheets from 6.7 to 34.5 m2/g, through an electrostatic-controlled growth and self-assembly mechanism. Detailed analysis based on Raman scattering, room-temperature photoluminescence, X-ray photoelectron spectroscopy and electron spin resonance revealed that the as-prepared ZnO nanosheets were rich in oxygen-vacancies. Increased BET surface area led to a further increase of surface oxygen-vacancy concentration. The rich oxygen-vacancies promoted the visible-light absorption of the ZnO nanosheets, leading to high photocurrent responses and photocatalytic activities towards the degradation of rhodamine B (apparent rate constants, k = 0.0179 min−1) under visible-light illumination (λ > 420 nm), about 13 and 11 times higher, respectively than that of ZnO nanoparticles with few oxygen defects. In addition, the high-surface-area ZnO nanosheets could be effectively hybridized with Ag3PO4 nanoparticles, resulting in a further enhancement of the visible-light photocatalytic performance (k = 0.0421 min−1). This increase in performance was attributed to the increased visible-light absorption as well as the energy level matching, the latter leading to efficient charge transfer between oxygen-vacancy-rich ZnO nanosheet and Ag3PO4, suggesting a synergistic effect of surface oxygen vacancies and Ag3PO4 coupling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助露桥闻笛采纳,获得10
刚刚
kyra完成签到,获得积分10
1秒前
懒得理完成签到 ,获得积分10
1秒前
陈博儿发布了新的文献求助10
1秒前
lcj完成签到,获得积分10
1秒前
1秒前
dazryt完成签到,获得积分10
1秒前
3秒前
3秒前
lucky完成签到,获得积分10
4秒前
4秒前
4秒前
YUEER完成签到,获得积分10
4秒前
cc发布了新的文献求助10
5秒前
xiaojian_291完成签到,获得积分10
6秒前
6秒前
7秒前
小花完成签到,获得积分10
7秒前
7秒前
Xieyusen发布了新的文献求助10
8秒前
Georges-09发布了新的文献求助10
8秒前
ziyuhewei完成签到,获得积分10
9秒前
9秒前
xiaotian发布了新的文献求助10
10秒前
10秒前
orixero应助zhx采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
77完成签到,获得积分20
13秒前
Lishumin完成签到,获得积分10
14秒前
Leo完成签到 ,获得积分10
14秒前
葡萄糖发布了新的文献求助10
14秒前
007发布了新的文献求助10
14秒前
Dale完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
19秒前
六一发布了新的文献求助50
19秒前
Orange应助勇往直前采纳,获得10
20秒前
隐形的凡阳完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913