乙基吗啡
去甲基化
化学
细胞色素b5
再灌注损伤
细胞色素
缺血
苯巴比妥
微粒体
内分泌学
天冬氨酸转氨酶
内科学
生物化学
生物
医学
酶
碱性磷酸酶
基因表达
DNA甲基化
基因
作者
Terry D. Lindstrom,Ramon F. Hanssen,A.M. Bendele
出处
期刊:PubMed
日期:1990-12-01
卷期号:38 (6): 829-35
被引量:12
摘要
Hepatic ischemia induced in vivo by ligation of the left hepatic lobe of rats for up to 2 hr had no effect on cytochrome P-450, cytochrome c reductase, or lobe histology; however, cytochrome b5 increased with ischemia duration. Ethylmorphine demethylation decreased 35% after 2 hr of ischemia. Reperfusion of tissue previously made ischemic for up to 2 hr was associated with appreciable necrosis as well as decreases in cytochrome P-450, cytochrome b5, cytochrome c reductase, and ethylmorphine demethylation. Serum alanine transaminase and aspartate transaminase concentrations were increased by reperfusion of previously ischemic tissue. Reperfusion of the previously ischemic lobe for 18 hr was associated with a greater loss of cytochromes P-450 and b5, cytochrome c reductase, and ethylmorphine demethylation than reperfusion for 1 hr. The total decrease in cytochrome P-450 and b5 content was equal to the decrease in total microsomal heme content, although cytochrome P-450 decreased more than cytochrome b5. Ethoxyresorufin deethylation by hepatic microsomes from 3-methylcholanthrene-treated rats was decreased by ischemia-reperfusion; however, pentoxyresorufin dealkylation by hepatic microsomes from phenobarbital-treated rats was not, suggesting specific cytochrome P-450 isozyme loss. In vitro NADPH-dependent lipid peroxidation in hepatic microsomes from control and phenobarbital- and 3-methylcholanthrene-treated rats resulted in a selective decrease of ethoxyresorufin but not pentoxyresorufin dealkylation, similar to that observed in livers subjected to ischemia-reperfusion in vivo. These data suggest that cytochrome P-450, ethylmorphine demethylation, and ethoxyresorufin deethylation are more susceptible to ischemia-reperfusion injury than cytochrome b5 or pentoxyresorufin dealkylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI