抄写(语言学)
计算机科学
作文(语言)
符号
词汇
自然语言处理
人工智能
音乐创作
语音识别
音乐教育
语言学
艺术
视觉艺术
文学类
哲学
作者
Bob L. Sturm,João Felipe Santos,Oded Ben‐Tal,Iryna Korshunova
出处
期刊:Cornell University - arXiv
日期:2016-01-01
被引量:54
标识
DOI:10.48550/arxiv.1604.08723
摘要
We apply deep learning methods, specifically long short-term memory (LSTM) networks, to music transcription modelling and composition. We build and train LSTM networks using approximately 23,000 music transcriptions expressed with a high-level vocabulary (ABC notation), and use them to generate new transcriptions. Our practical aim is to create music transcription models useful in particular contexts of music composition. We present results from three perspectives: 1) at the population level, comparing descriptive statistics of the set of training transcriptions and generated transcriptions; 2) at the individual level, examining how a generated transcription reflects the conventions of a music practice in the training transcriptions (Celtic folk); 3) at the application level, using the system for idea generation in music composition. We make our datasets, software and sound examples open and available: \url{https://github.com/IraKorshunova/folk-rnn}.
科研通智能强力驱动
Strongly Powered by AbleSci AI