A Combined Model- and Learning-Based Framework for Interaction-Aware Maneuver Prediction

计算机科学 机器学习 启发式 可扩展性 人工智能 维数之咒 分类器(UML) 数据挖掘 数据库 操作系统
作者
Mohammad Bahram,Constantin Hubmann,Andreas Lawitzky,Michael Aeberhard,Dirk Wollherr
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (6): 1538-1550 被引量:146
标识
DOI:10.1109/tits.2015.2506642
摘要

This paper presents a novel online-capable interaction-aware intention and maneuver prediction framework for dynamic environments. The main contribution is the combination of model-based interaction-aware intention estimation with maneuver-based motion prediction based on supervised learning. The advantages of this framework are twofold. On one hand, expert knowledge in the form of heuristics is integrated, which simplifies the modeling of the interaction. On the other hand, the difficulties associated with the scalability and data sparsity of the algorithm due to the so-called curse of dimensionality can be reduced, as a reduced feature space is sufficient for supervised learning. The proposed algorithm can be used for highly automated driving or as a prediction module for advanced driver assistance systems without the need of intervehicle communication. At the start of the algorithm, the motion intention of each driver in a traffic scene is predicted in an iterative manner using the game-theoretic idea of stochastic multiagent simulation. This approach provides an interpretation of what other drivers intend to do and how they interact with surrounding traffic. By incorporating this information into a Bayesian network classifier, the developed framework achieves a significant improvement in terms of reliable prediction time and precision compared with other state-of-the-art approaches. By means of experimental results in real traffic on highways, the validity of the proposed concept and its online capability is demonstrated. Furthermore, its performance is quantitatively evaluated using appropriate statistical measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼凡波完成签到,获得积分10
1秒前
4秒前
4秒前
earthai完成签到,获得积分10
5秒前
幸运兔发布了新的文献求助10
6秒前
旧梦如烟完成签到,获得积分10
6秒前
森sen完成签到 ,获得积分10
8秒前
8秒前
Ava应助wwt采纳,获得10
9秒前
T1unkillable完成签到 ,获得积分10
10秒前
10秒前
11秒前
13秒前
likenoodles发布了新的文献求助10
15秒前
在水一方应助xuexue采纳,获得10
15秒前
D33sama完成签到,获得积分10
17秒前
17秒前
舒适可乐发布了新的文献求助10
18秒前
19秒前
19秒前
lx完成签到 ,获得积分10
22秒前
小蘑菇应助彩色谷蕊采纳,获得10
22秒前
22秒前
23秒前
kant2023完成签到,获得积分10
24秒前
李健应助YYY采纳,获得10
25秒前
25秒前
十七完成签到 ,获得积分10
27秒前
xuexue给xuexue的求助进行了留言
27秒前
John发布了新的文献求助10
30秒前
33秒前
36秒前
ZZL发布了新的文献求助10
37秒前
枯夏发布了新的文献求助10
41秒前
41秒前
专注的小松鼠完成签到,获得积分10
42秒前
43秒前
李健的小迷弟应助ZZL采纳,获得10
44秒前
zdesfsfa发布了新的文献求助10
47秒前
无情的剑心完成签到,获得积分10
48秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574