Selection for Surgical Training: An Evidence-Based Review

选择(遗传算法) 标准化 可靠性(半导体) 梅德林 卓越 过程(计算) 医学 医学教育 计算机科学 医学物理学 机器学习 物理 功率(物理) 法学 操作系统 量子力学 政治学
作者
Mark V. Schaverien
出处
期刊:Journal of Surgical Education [Elsevier]
卷期号:73 (4): 721-729 被引量:33
标识
DOI:10.1016/j.jsurg.2016.02.007
摘要

The predictive relationship between candidate selection criteria for surgical training programs and future performance during and at the completion of training has been investigated for several surgical specialties, however there is no interspecialty agreement regarding which selection criteria should be used. Better understanding the predictive reliability between factors at selection and future performance may help to optimize the process and lead to greater standardization of the surgical selection process. PubMed and Ovid MEDLINE databases were searched. Over 560 potentially relevant publications were identified using the search strategy and screened using the Cochrane Collaboration Data Extraction and Assessment Template. 57 studies met the inclusion criteria. Several selection criteria used in the traditional selection demonstrated inconsistent correlation with subsequent performance during and at the end of surgical training. The following selection criteria, however, demonstrated good predictive relationships with subsequent resident performance: USMLE examination scores, Letters of Recommendation (LOR) including the Medical Student Performance Evaluation (MSPE), academic performance during clinical clerkships, the interview process, displaying excellence in extracurricular activities, and the use of unadjusted rank lists. This systematic review supports that the current selection process needs to be further evaluated and improved. Multicenter studies using standardized outcome measures of success are now required to improve the reliability of the selection process to select the best trainees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助果子采纳,获得10
刚刚
单薄剑愁完成签到,获得积分10
刚刚
6666发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
2秒前
优秀冰真发布了新的文献求助10
2秒前
2秒前
3秒前
fairyinn完成签到 ,获得积分10
6秒前
binz完成签到,获得积分0
6秒前
Wally完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
Orange应助科研通管家采纳,获得50
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
13秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767230
求助须知:如何正确求助?哪些是违规求助? 5568895
关于积分的说明 15414730
捐赠科研通 4901226
什么是DOI,文献DOI怎么找? 2636925
邀请新用户注册赠送积分活动 1585104
关于科研通互助平台的介绍 1540273