Selection for Surgical Training: An Evidence-Based Review

选择(遗传算法) 标准化 可靠性(半导体) 梅德林 卓越 过程(计算) 医学 医学教育 计算机科学 医学物理学 机器学习 功率(物理) 物理 量子力学 政治学 法学 操作系统
作者
Mark V. Schaverien
出处
期刊:Journal of Surgical Education [Elsevier]
卷期号:73 (4): 721-729 被引量:33
标识
DOI:10.1016/j.jsurg.2016.02.007
摘要

The predictive relationship between candidate selection criteria for surgical training programs and future performance during and at the completion of training has been investigated for several surgical specialties, however there is no interspecialty agreement regarding which selection criteria should be used. Better understanding the predictive reliability between factors at selection and future performance may help to optimize the process and lead to greater standardization of the surgical selection process. PubMed and Ovid MEDLINE databases were searched. Over 560 potentially relevant publications were identified using the search strategy and screened using the Cochrane Collaboration Data Extraction and Assessment Template. 57 studies met the inclusion criteria. Several selection criteria used in the traditional selection demonstrated inconsistent correlation with subsequent performance during and at the end of surgical training. The following selection criteria, however, demonstrated good predictive relationships with subsequent resident performance: USMLE examination scores, Letters of Recommendation (LOR) including the Medical Student Performance Evaluation (MSPE), academic performance during clinical clerkships, the interview process, displaying excellence in extracurricular activities, and the use of unadjusted rank lists. This systematic review supports that the current selection process needs to be further evaluated and improved. Multicenter studies using standardized outcome measures of success are now required to improve the reliability of the selection process to select the best trainees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助xyy采纳,获得30
1秒前
大气早晨发布了新的文献求助10
1秒前
Ava应助wang1030采纳,获得10
3秒前
冰激凌发布了新的文献求助10
4秒前
4秒前
胆大璐完成签到 ,获得积分10
5秒前
科研通AI2S应助阔达皮卡丘采纳,获得10
6秒前
6秒前
完美世界应助vily采纳,获得10
6秒前
奶油蜜豆卷完成签到,获得积分10
7秒前
lijiaoyang完成签到,获得积分10
8秒前
Diana完成签到,获得积分10
8秒前
Hello应助hbhbj采纳,获得10
8秒前
8秒前
懵懂小尉完成签到,获得积分10
9秒前
zw发布了新的文献求助10
10秒前
10秒前
JamesPei应助那都通采纳,获得10
11秒前
乐乐应助嗡嗡嗡采纳,获得10
11秒前
泡芙完成签到,获得积分10
12秒前
13秒前
温暖香菱完成签到,获得积分10
13秒前
14秒前
苹果完成签到,获得积分10
14秒前
ruohanyu完成签到 ,获得积分10
14秒前
如风随水发布了新的文献求助10
15秒前
NexusExplorer应助ww采纳,获得10
15秒前
15秒前
15秒前
ssy发布了新的文献求助20
16秒前
WANJCE发布了新的文献求助10
17秒前
Aaron完成签到,获得积分10
17秒前
18秒前
Orange应助青青小筑采纳,获得10
19秒前
无语的成仁完成签到,获得积分10
19秒前
20秒前
开心蛋挞发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
minkuuuuuuu应助冰激凌采纳,获得10
22秒前
陌上之心发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838