Coupled Subset Simulation and Moving Least-Squares Method for Reliability-Based Control Optimization

认证 航空安全 代理(哲学) 航空 运筹学 计算机科学 飞行动力学 控制(管理) 可靠性(半导体) 航空学 工程类 政治学 航空航天工程 法学 人工智能 物理 空气动力学 社会学 功率(物理) 量子力学 社会科学
作者
Dalong Shi,Florian Holzapfel
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:44 (8): 1550-1558 被引量:4
标识
DOI:10.2514/1.g005786
摘要

No AccessEngineering NotesCoupled Subset Simulation and Moving Least-Squares Method for Reliability-Based Control OptimizationDalong Shi and Florian HolzapfelDalong ShiTechnical University of Munich, 85748 Garching, Germany*Ph.D. Candidate, Institute of Flight System Dynamics.Search for more papers by this author and Florian HolzapfelTechnical University of Munich, 85748 Garching, Germany†Professor, Institute of Flight System Dynamics. Associate Fellow AIAA.Search for more papers by this authorPublished Online:3 May 2021https://doi.org/10.2514/1.G005786SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Easy Access Rules for All Weather Operations (CS-AWO), European Aviation Safety Agency, 2018, p. 15, https://www.easa.europa.eu/document-library/easy-access-rules/easy-access-rules-all-weather-operations-cs-awo-initial-issue. Google Scholar[2] Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes, CS-25, Amendment 25, European Aviation Safety Agency, 2020, pp. 2-F-47–2-F-50, https://www.easa.europa.eu/document-library/certification-specifications/cs-25-amendment-25. Google Scholar[3] Calafiore G. C. and Campi M. C., “The Scenario Approach to Robust Control Design,” IEEE Transactions on Automatic Control, Vol. 51, No. 5, 2006, pp. 742–753. https://doi.org/10.1109/TAC.2006.875041 CrossrefGoogle Scholar[4] Kim K. K. K. and Braatz R. D., “Probabilistic Analysis and Control of Uncertain Dynamic Systems: Generalized Polynomial Chaos Expansion Approaches,” 2012 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2012, pp. 44–49. https://doi.org/10.1109/ACC.2012.6314853 Google Scholar[5] Zhao Z. and Kumar M., “Split-Bernstein Approach to Chance-Constrained Optimal Control,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 11, 2017, pp. 2782–2795. https://doi.org/10.2514/1.G002551 LinkGoogle Scholar[6] Paulson J. A. and Mesbah A., “An Efficient Method for Stochastic Optimal Control with Joint Chance Constraints for Nonlinear Systems,” International Journal of Robust and Nonlinear Control, Vol. 29, No. 15, 2019, pp. 5017–5037. https://doi.org/10.1002/rnc.3999 CrossrefGoogle Scholar[7] Mesbah A., Streif S., Findeisen R. and Braatz R. D., “Stochastic Nonlinear Model Predictive Control with Probabilistic Constraints,” 2014 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2014, pp. 2413–2419. https://doi.org/10.1109/ACC.2014.6858851 Google Scholar[8] Farina M. and Scattolini R., “Model Predictive Control of Linear Systems with Multiplicative Unbounded Uncertainty and Chance Constraints,” Automatica, Vol. 70, Aug. 2016, pp. 258–265. https://doi.org/10.1016/j.automatica.2016.04.008 Google Scholar[9] Paulson J. A., Buehler E. A., Braatz R. D. and Mesbah A., “Stochastic Model Predictive Control with Joint Chance Constraints,” International Journal of Control, Vol. 93, No. 1, 2020, pp. 126–139. https://doi.org/10.1080/00207179.2017.1323351 CrossrefGoogle Scholar[10] Aoues Y. and Chateauneuf A., “Benchmark Study of Numerical Methods for Reliability-Based Design Optimization,” Structural and Multidisciplinary Optimization, Vol. 41, No. 2, 2010, pp. 277–294. https://doi.org/10.1007/s00158-009-0412-2 CrossrefGoogle Scholar[11] Dubourg V., Sudret B. and Bourinet J.-M., “Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation,” Structural and Multidisciplinary Optimization, Vol. 44, No. 5, 2011, pp. 673–690. https://doi.org/10.1007/s00158-011-0653-8 CrossrefGoogle Scholar[12] Moustapha M. and Sudret B., “Surrogate-Assisted Reliability-Based Design Optimization: A Survey and a Unified Modular Framework,” Structural and Multidisciplinary Optimization, Vol. 60, May 2019, pp. 2157–2176. https://doi.org/10.1007/s00158-019-02290-y CrossrefGoogle Scholar[13] Au S.-K. and Beck J. L., “Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation,” Probabilistic Engineering Mechanics, Vol. 16, No. 4, 2001, pp. 263–277. https://doi.org/10.1016/S0266-8920(01)00019-4 CrossrefGoogle Scholar[14] Au S.-K. and Wang Y., Engineering Risk Assessment with Subset Simulation, Wiley, Singapore, 2014, Chap. 5. https://doi.org/10.1002/9781118398050 CrossrefGoogle Scholar[15] Löbl D. and Holzapfel F., “Subset Simulation for Estimating Small Failure Probabilities of an Aerial System Subject to Atmospheric Turbulences,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2015-0236, 2015. https://doi.org/10.2514/6.2015-0236 LinkGoogle Scholar[16] Wang M., Zhang S., Holzapfel F., Löbl D. and Hellmundt F., “Probabilistic Assessment of a Safety-Critical Backup Controller by Subset Simulation,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 1146–1156. https://doi.org/10.2514/1.G003901 LinkGoogle Scholar[17] Huang X., Chen J. and Zhu H., “Assessing Small Failure Probabilities by AK–SS: An Active Learning Method Combining Kriging and Subset Simulation,” Structural Safety, Vol. 59, March 2016, pp. 86–95. https://doi.org/10.1016/j.strusafe.2015.12.003 CrossrefGoogle Scholar[18] Bourinet J.-M., Deheeger F. and Lemaire M., “Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines,” Structural Safety, Vol. 33, No. 6, 2011, pp. 343–353. https://doi.org/10.1016/j.strusafe.2011.06.001 CrossrefGoogle Scholar[19] Papadopoulos V., Giovanis D. G., Lagaros N. D. and Papadrakakis M., “Accelerated Subset Simulation with Neural Networks for Reliability Analysis,” Computer Methods in Applied Mechanics and Engineering, Vol. 223, June 2012, pp. 70–80. https://doi.org/10.1016/j.cma.2012.02.013 CrossrefGoogle Scholar[20] Shi D. and Holzapfel F., “Rare-Event Chance-Constrained Flight Control Optimization Using Surrogate-Based Subset Simulation,” AIAA Scitech 2021 Forum, AIAA Paper 2021-1856, 2021. https://doi.org/10.2514/6.2021-1856 Google Scholar[21] Proppe C., “Estimation of Failure Probabilities by Local Approximation of the Limit State Function,” Structural Safety, Vol. 30, No. 4, 2008, pp. 277–290. https://doi.org/10.1016/j.strusafe.2007.04.001 CrossrefGoogle Scholar[22] Breitkopf P., Naceur H., Rassineux A. and Villon P., “Moving Least Squares Response Surface Approximation: Formulation and Metal Forming Applications,” Computers and Structures, Vol. 83, Nos. 17–18, 2005, pp. 1411–1428. https://doi.org/10.1016/j.compstruc.2004.07.011 CrossrefGoogle Scholar[23] Zuev K. M., Beck J. L., Au S.-K. and Katafygiotis L. S., “Bayesian Post-Processor and Other Enhancements of Subset Simulation for Estimating Failure Probabilities in High Dimensions,” Computers and Structures, Vol. 92, Feb. 2012, pp. 283–296. https://doi.org/10.1016/j.compstruc.2011.10.017 CrossrefGoogle Scholar[24] Papaioannou I., Betz W., Zwirglmaier K. and Straub D., “MCMC Algorithms for Subset Simulation,” Probabilistic Engineering Mechanics, Vol. 41, July 2015, pp. 89–103. https://doi.org/10.1016/j.probengmech.2015.06.006 CrossrefGoogle Scholar[25] Moorhouse D. and Woodcock R. (eds.), US Military Specification MIL-F-8785C, US Department of Defense, 1980, p. 48, Chap. 3. Google Scholar[26] Shi D., Fang X. and Holzapfel F., “Polynomial Chaos-Based Flight Control Optimization with Guaranteed Probabilistic Performance,” 21th IFAC World Congress, 2020, pp. 7274–7279. https://doi.org/10.1016/j.ifacol.2020.12.565 Google Scholar[27] “Surrogateopt: Surrogate Optimization for Global Minimization of Time-Consuming Objective Functions,” MathWorks, 2018, https://www.mathworks.com/help/gads/surrogateopt.html [retrieved 8 Sept. 2020]. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byA Refined Kriging Surrogate Model for Subset SimulationDavid Braun, Dalong Shi, Florian Schwaiger and Florian Holzapfel29 December 2021A Modular Subset Simulation Toolbox for MatlabFlorian Schwaiger, Dalong Shi, Chinmaya Mishra, Lukas Höhndorf and Florian Holzapfel29 December 2021 What's Popular Volume 44, Number 8August 2021 CrossmarkInformationCopyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-6794 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAlgorithms and Data StructuresArtificial IntelligenceArtificial Neural NetworkComputer Programming and LanguageComputing SystemComputing and InformaticsComputing, Information, and CommunicationControl TheoryData ScienceGuidance, Navigation, and Control SystemsMachine LearningOptimal Control TheoryOptimization AlgorithmSearch Algorithm KeywordsProportional Integral DerivativeSurrogate ModelFlight Control DesignCumulative Distribution FunctionElevator DeflectionSupport Vector MachineOptimization AlgorithmMonte Carlo SimulationAerospace EngineeringStructural MechanicsAcknowledgmentDalong Shi acknowledges the support of the China Scholarship Council.PDF Received12 November 2020Accepted18 March 2021Published online3 May 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sue发布了新的文献求助100
刚刚
量子星尘发布了新的文献求助10
刚刚
酷炫的白翠完成签到,获得积分10
1秒前
1秒前
英姑应助GGB采纳,获得10
1秒前
1秒前
geoffreyfan发布了新的文献求助10
2秒前
斯文败类应助未月初二采纳,获得10
3秒前
3秒前
fino发布了新的文献求助10
3秒前
Mullt完成签到 ,获得积分10
5秒前
小金鱼完成签到,获得积分20
5秒前
5秒前
5秒前
专一的猎豹完成签到,获得积分10
6秒前
Jingg完成签到,获得积分10
6秒前
OnMyWorldside发布了新的文献求助10
7秒前
朴实浩宇完成签到,获得积分10
8秒前
明天想自律完成签到 ,获得积分10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
皮卡皮卡丘完成签到,获得积分10
11秒前
11秒前
顾矜应助fino采纳,获得10
11秒前
ymbb发布了新的文献求助10
12秒前
12秒前
淡然的咖啡豆完成签到 ,获得积分10
12秒前
旺仔不甜完成签到,获得积分10
12秒前
13秒前
科研小趴菜完成签到,获得积分10
13秒前
孔踏歌完成签到,获得积分10
13秒前
一个好听的名字完成签到,获得积分10
14秒前
远山黛完成签到 ,获得积分10
14秒前
李健应助生信小白菜采纳,获得10
15秒前
复杂方盒发布了新的文献求助10
15秒前
称心梦之完成签到,获得积分10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771